VAE在3D点云上应用总结

文章结构

VAE基本原理

  1. 什么是autoencoder?
  2. 它的主要问题是什么?为什么要使用VAE
  3. VAE基本结构以及VAE的训练目标。

Autoencoder主要的结构就是一个encoder和decoder的形式,encoder主要是将输入的数据压缩整一个很小的latent vector。Decoder是解码或者还原latent vector。为什么Autoencoder不好,是因为在encoder学习到的latent space并不是uniformly distributed,而是在一些位置上会有 discrete data patches。这些discrete data patches在decoder解码的时候会出现毫无意义的输出。所以这也是为什么autoencoder只能在数据压缩或者数据重建上面取得不错的结果,但是在数据生成方面AE是结构上是明显不足的。

那么根据AE在latent space中出现的问题,VAE的出现就很自然,因为对于这种non-uniformly distributed的latent而言的话,最自然的想法就是去估计这个latent space的分布,但是对这样的分布又无法在数学上做到准确的计算,因为它是intractable的。VAE的目标就是去近似这个真实的分布,其实就是在最优它的marginal likelihood。自然的,这个marginal likelihood它有两个部分来组成,其中一个是KL Divergence,另外一个就是evidence lower bound (variational lower bound), 这两个项的关系就是 "你多我少,我少你多",换句话来说,最大化variational lower bound就是在最小化KL divergence。但是有一个问题是需要注意的,就是在训练VAE的时候,从pytorch的角度上来讲,decoder的输入是从encoder输出的分布中的采样得到的,但是采样会导致computational graph上出现nondeterminitic node, 从而导致无法最反向传播。 所以这也就有了 reparameteration trick,大白话来说,它就是把sample出来的东西放到另外一个node上,让反向传播可以做。(把nondeterministic变成deterministic)

VAE在3D点云上的应用

VAE在3D点云上的应用主要就是generation,completion。其中我认为比较有趣且相对有用的3D点云生成的VAE结构一个是componet, 2019年的文章,相对较老,它主要分两个板块,一个是Part synthesis unit, 一个是Part composition unit。这篇文章的做法就是把一个2D shape拆分开,然后生成若干个parts,然后在合并到一起。这种结构比较可以用到3D人物的点云生成上面,因为3D人体每个部分的细节分布是不一样的,比如身体的shape可以用稀疏点云就可以大致的描述出它的形状了,但是脸部和手部,如果使用同样分布的稀疏点云,就很难描述出脸部的细节,比如五官。

近期较新的文章, 就是EditVAE,发表于2022年,它也使用可上述这种part-aware的形式,同时实现了复杂shape的生成和editing。

相关推荐
王学政24 分钟前
LlamaIndex 第九篇 Indexing索引
人工智能·python
双翌视觉1 小时前
机器视觉对位手机中框点胶的应用
计算机视觉·机器视觉·视觉对位·视觉软件
白熊1881 小时前
【计算机视觉】OpenCV实战项目:基于OpenCV的车牌识别系统深度解析
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
小王格子2 小时前
AI 编程革命:腾讯云 CodeBuddy 如何重塑开发效率?
人工智能·云计算·腾讯云·codebuddy·craft
MonkeyKing_sunyuhua2 小时前
VSCode + Cline AI辅助编程完全指南
ide·人工智能·vscode
Leinwin2 小时前
Microsoft Azure 服务4月更新告示
人工智能·azure
胡耀超2 小时前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
jndingxin2 小时前
OpenCV CUDA 模块中用于在 GPU 上计算两个数组对应元素差值的绝对值函数absdiff(
人工智能·opencv·计算机视觉