VAE在3D点云上应用总结

文章结构

VAE基本原理

  1. 什么是autoencoder?
  2. 它的主要问题是什么?为什么要使用VAE
  3. VAE基本结构以及VAE的训练目标。

Autoencoder主要的结构就是一个encoder和decoder的形式,encoder主要是将输入的数据压缩整一个很小的latent vector。Decoder是解码或者还原latent vector。为什么Autoencoder不好,是因为在encoder学习到的latent space并不是uniformly distributed,而是在一些位置上会有 discrete data patches。这些discrete data patches在decoder解码的时候会出现毫无意义的输出。所以这也是为什么autoencoder只能在数据压缩或者数据重建上面取得不错的结果,但是在数据生成方面AE是结构上是明显不足的。

那么根据AE在latent space中出现的问题,VAE的出现就很自然,因为对于这种non-uniformly distributed的latent而言的话,最自然的想法就是去估计这个latent space的分布,但是对这样的分布又无法在数学上做到准确的计算,因为它是intractable的。VAE的目标就是去近似这个真实的分布,其实就是在最优它的marginal likelihood。自然的,这个marginal likelihood它有两个部分来组成,其中一个是KL Divergence,另外一个就是evidence lower bound (variational lower bound), 这两个项的关系就是 "你多我少,我少你多",换句话来说,最大化variational lower bound就是在最小化KL divergence。但是有一个问题是需要注意的,就是在训练VAE的时候,从pytorch的角度上来讲,decoder的输入是从encoder输出的分布中的采样得到的,但是采样会导致computational graph上出现nondeterminitic node, 从而导致无法最反向传播。 所以这也就有了 reparameteration trick,大白话来说,它就是把sample出来的东西放到另外一个node上,让反向传播可以做。(把nondeterministic变成deterministic)

VAE在3D点云上的应用

VAE在3D点云上的应用主要就是generation,completion。其中我认为比较有趣且相对有用的3D点云生成的VAE结构一个是componet, 2019年的文章,相对较老,它主要分两个板块,一个是Part synthesis unit, 一个是Part composition unit。这篇文章的做法就是把一个2D shape拆分开,然后生成若干个parts,然后在合并到一起。这种结构比较可以用到3D人物的点云生成上面,因为3D人体每个部分的细节分布是不一样的,比如身体的shape可以用稀疏点云就可以大致的描述出它的形状了,但是脸部和手部,如果使用同样分布的稀疏点云,就很难描述出脸部的细节,比如五官。

近期较新的文章, 就是EditVAE,发表于2022年,它也使用可上述这种part-aware的形式,同时实现了复杂shape的生成和editing。

相关推荐
CeshirenTester14 分钟前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
棒棒的皮皮18 分钟前
【OpenCV】Python图像处理几何变换之翻转
图像处理·python·opencv·计算机视觉
世岩清上41 分钟前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM43 分钟前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球1 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (三)1×1卷积与Inception网络
深度学习·ai
鼾声鼾语1 小时前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab
Dingdangcat861 小时前
中药材图像识别与分类 RetinaNet-R101-FPN模型详解
人工智能·数据挖掘
老蒋新思维1 小时前
创客匠人视角:智能体重构创始人 IP,知识变现从 “内容售卖” 到 “能力复制” 的革命
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
Honmaple2 小时前
Spring AI 2.x 发布:全面拥抱 Java 21,Redis 史诗级增强
java·人工智能·spring