使用LSTM网络实现文本情感分析

一、实验目的:

理解循环神经网络的基本概念和原理;了解循环神经网络处理文本数据的基本方法;掌握循环神经网络处理文本数据的实践方法,并实现文本情感分析任务。

  • 实验要求:

使用Keras框架定义并训练循环神经网络模型,并进行文本情感分析。

python 复制代码
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt

import numpy as np

# 加载 IMDB 数据
imdb = keras.datasets.imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
print("训练记录数量:{},标签数量:{}".format(len(train_data), len(train_labels)))
print(train_data[0])

# 数据标准化
train_data = keras.preprocessing.sequence.pad_sequences(train_data, padding='post', maxlen=256)
test_data = keras.preprocessing.sequence.pad_sequences(test_data, padding='post', maxlen=256)
print(train_data[0])
# 构建模型
vocab_size = 10000
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 64),
                             tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), tf.keras.
                            layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1)
                             ])
model.summary()
# 配置并训练模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
x_val = train_data[:10000]
partial_x_train = train_data[10000:]
y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]
history = model.fit(partial_x_train, partial_y_train, epochs=10, batch_size=512, validation_data=(x_val, y_val),
                    verbose=1)

result = model.evaluate(test_data, test_labels, verbose=2)
print(result)
# 训练过程可视化
history_dict = history.history
print(history_dict.keys())


def plot_graphs(history, string):
    plt.plot(history.history[string])
    plt.plot(history.history['val_' + string])
    plt.xlabel("Epochs")
    plt.ylabel(string)
    plt.legend([string, 'val_' + string])
    plt.show()


plot_graphs(history, "accuracy")


plot_graphs(history, "loss")

运行结果可视化:

相关推荐
yusaisai大鱼3 分钟前
TensorFlow如何调用GPU?
人工智能·tensorflow
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董3 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦3 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw4 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner5 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao5 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama