不对称催化(三)- 动态动力学拆分&动态动力学不对称转化

一、动力学拆分的基本概念:

动力学拆分的最大理论产率为50%,通过的差异可以将两个对映异构体转化为不同构型的产物,通常情况下使用两个不同反应路径来实现。但是化学家们提供了一个更加实用的方法,通过底物的构型变化实现高于50%的产率,这种方法被称为动态动力学拆分(DKR)

DKR 将动力学拆分与一个将手性底物进行通过非手性中间体(和过渡态的快速原位外消旋化过程耦合起来。随着反应较快的底物对映体通过一个对映选择性的拆分过程不断地转化为产物,(底物的两个对映体之间的)平衡总是通过一个动态的外消旋化过程进行调节。 外消旋化过程是热力学有利的,因为两种对映体混合时造成了熵的增加

跟动力学拆分一样,反应较快的对映体的速率()必须比较慢的对映体的速率()快得多。当 > 20 时可以得到非常好的结果。**一个成功的动态动力学拆分的典型条件是外消旋化过程的应该以大于或等于催化不对称过程的速率(即)进行。**然而,当非常高时,即使也可能得到高ee 值的产物。

除此之外,如果,DKR 会比经典动力学拆分获得更高的产物对映体过量,因为

连续不断的外消旋化过程会防止阻碍动力学拆分其中一个底物对映体的累积这一过程的发生。

相关推荐
草履虫建模7 小时前
力扣算法 1768. 交替合并字符串
java·开发语言·算法·leetcode·职场和发展·idea·基础
华玥作者9 小时前
[特殊字符] VitePress 对接 Algolia AI 问答(DocSearch + AI Search)完整实战(下)
前端·人工智能·ai
AAD555888999 小时前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
naruto_lnq9 小时前
分布式系统安全通信
开发语言·c++·算法
王建文go9 小时前
RAG(宠物健康AI)
人工智能·宠物·rag
巫婆理发2229 小时前
循环序列模型
深度学习·神经网络
Jasmine_llq9 小时前
《P3157 [CQOI2011] 动态逆序对》
算法·cdq 分治·动态问题静态化+双向偏序统计·树状数组(高效统计元素大小关系·排序算法(预处理偏序和时间戳)·前缀和(合并单个贡献为总逆序对·动态问题静态化
ALINX技术博客9 小时前
【202601芯动态】全球 FPGA 异构热潮,ALINX 高性能异构新品预告
人工智能·fpga开发·gpu算力·fpga
易营宝9 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
春日见10 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎