不对称催化(三)- 动态动力学拆分&动态动力学不对称转化

一、动力学拆分的基本概念:

动力学拆分的最大理论产率为50%,通过的差异可以将两个对映异构体转化为不同构型的产物,通常情况下使用两个不同反应路径来实现。但是化学家们提供了一个更加实用的方法,通过底物的构型变化实现高于50%的产率,这种方法被称为动态动力学拆分(DKR)

DKR 将动力学拆分与一个将手性底物进行通过非手性中间体(和过渡态的快速原位外消旋化过程耦合起来。随着反应较快的底物对映体通过一个对映选择性的拆分过程不断地转化为产物,(底物的两个对映体之间的)平衡总是通过一个动态的外消旋化过程进行调节。 外消旋化过程是热力学有利的,因为两种对映体混合时造成了熵的增加

跟动力学拆分一样,反应较快的对映体的速率()必须比较慢的对映体的速率()快得多。当 > 20 时可以得到非常好的结果。**一个成功的动态动力学拆分的典型条件是外消旋化过程的应该以大于或等于催化不对称过程的速率(即)进行。**然而,当非常高时,即使也可能得到高ee 值的产物。

除此之外,如果,DKR 会比经典动力学拆分获得更高的产物对映体过量,因为

连续不断的外消旋化过程会防止阻碍动力学拆分其中一个底物对映体的累积这一过程的发生。

相关推荐
嘿嘻哈呀1 分钟前
使用ID3算法根据信息增益构建决策树
决策树·机器学习·信息增益·id3算法
区块链小八歌12 分钟前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 场景
人工智能
禾高网络15 分钟前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
湫ccc1 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate2 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜2 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
火星机器人life2 小时前
基于ceres优化的3d激光雷达开源算法
算法·3d
GocNeverGiveUp2 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien2 小时前
图像处理-Ch2-空间域的图像增强
人工智能
虽千万人 吾往矣2 小时前
golang LeetCode 热题 100(动态规划)-更新中
算法·leetcode·动态规划