不对称催化(三)- 动态动力学拆分&动态动力学不对称转化

一、动力学拆分的基本概念:

动力学拆分的最大理论产率为50%,通过的差异可以将两个对映异构体转化为不同构型的产物,通常情况下使用两个不同反应路径来实现。但是化学家们提供了一个更加实用的方法,通过底物的构型变化实现高于50%的产率,这种方法被称为动态动力学拆分(DKR)

DKR 将动力学拆分与一个将手性底物进行通过非手性中间体(和过渡态的快速原位外消旋化过程耦合起来。随着反应较快的底物对映体通过一个对映选择性的拆分过程不断地转化为产物,(底物的两个对映体之间的)平衡总是通过一个动态的外消旋化过程进行调节。 外消旋化过程是热力学有利的,因为两种对映体混合时造成了熵的增加

跟动力学拆分一样,反应较快的对映体的速率()必须比较慢的对映体的速率()快得多。当 > 20 时可以得到非常好的结果。**一个成功的动态动力学拆分的典型条件是外消旋化过程的应该以大于或等于催化不对称过程的速率(即)进行。**然而,当非常高时,即使也可能得到高ee 值的产物。

除此之外,如果,DKR 会比经典动力学拆分获得更高的产物对映体过量,因为

连续不断的外消旋化过程会防止阻碍动力学拆分其中一个底物对映体的累积这一过程的发生。

相关推荐
松岛雾奈.23010 分钟前
机器学习--KNN算法中的距离、范数、正则化
人工智能·算法·机器学习
兮山与15 分钟前
算法33.0
算法
程途拾光15826 分钟前
用流程图优化工作流:快速识别冗余环节,提升效率
大数据·论文阅读·人工智能·流程图·论文笔记
Lab4AI大模型实验室28 分钟前
【Github热门项目】DeepSeek-OCR项目上线即突破7k+星!突破10倍无损压缩,重新定义文本-视觉信息处理
人工智能·github·deepseek-ocr
Brduino脑机接口技术答疑31 分钟前
支持向量机(SVM)在脑电情绪识别中的学术解析与研究进展
人工智能·算法·机器学习·支持向量机·数据分析
北京耐用通信43 分钟前
从‘卡壳’到‘丝滑’:耐达讯自动化PROFIBUS光纤模块如何让RFID读写器实现‘零延迟’物流追踪?”
网络·人工智能·科技·物联网·网络协议·自动化
南汐汐月1 小时前
重生归来,我要成功 Python 高手--day35 深度学习 Pytorch
pytorch·python·深度学习
xier_ran1 小时前
深度学习:Mini-batch 大小选择与 SGD 和 GD
人工智能·算法·机器学习
CodeLiving1 小时前
MCP学习三——MCP相关概念
人工智能·mcp
Gitpchy1 小时前
简单CNN——作业(补充)
人工智能·神经网络·cnn