不对称催化(三)- 动态动力学拆分&动态动力学不对称转化

一、动力学拆分的基本概念:

动力学拆分的最大理论产率为50%,通过的差异可以将两个对映异构体转化为不同构型的产物,通常情况下使用两个不同反应路径来实现。但是化学家们提供了一个更加实用的方法,通过底物的构型变化实现高于50%的产率,这种方法被称为动态动力学拆分(DKR)

DKR 将动力学拆分与一个将手性底物进行通过非手性中间体(和过渡态的快速原位外消旋化过程耦合起来。随着反应较快的底物对映体通过一个对映选择性的拆分过程不断地转化为产物,(底物的两个对映体之间的)平衡总是通过一个动态的外消旋化过程进行调节。 外消旋化过程是热力学有利的,因为两种对映体混合时造成了熵的增加

跟动力学拆分一样,反应较快的对映体的速率()必须比较慢的对映体的速率()快得多。当 > 20 时可以得到非常好的结果。**一个成功的动态动力学拆分的典型条件是外消旋化过程的应该以大于或等于催化不对称过程的速率(即)进行。**然而,当非常高时,即使也可能得到高ee 值的产物。

除此之外,如果,DKR 会比经典动力学拆分获得更高的产物对映体过量,因为

连续不断的外消旋化过程会防止阻碍动力学拆分其中一个底物对映体的累积这一过程的发生。

相关推荐
大模型任我行28 分钟前
华为:构建特征级LLM编码评测基准
人工智能·语言模型·自然语言处理·论文笔记
Jason_Honey229 分钟前
【平安Agent算法岗面试-二面】
人工智能·算法·面试
Godspeed Zhao39 分钟前
现代智能汽车中的无线技术106——ETC(0)
网络·人工智能·汽车
程序员酥皮蛋40 分钟前
hot 100 第三十五题 35.二叉树的中序遍历
数据结构·算法·leetcode
追随者永远是胜利者43 分钟前
(LeetCode-Hot100)207. 课程表
java·算法·leetcode·go
恋猫de小郭43 分钟前
AGENTS.md 真的对 AI Coding 有用吗?或许在此之前你没用对?
前端·人工智能·ai编程
久邦科技1 小时前
OpenCode 完整入门(安装 + 配置 + 使用 + 模板)
人工智能
zhangshuang-peta1 小时前
模型上下文协议(MCP):演进历程、功能特性与Peta的崛起
人工智能·ai agent·mcp·peta
heimeiyingwang1 小时前
企业供应链 AI 优化:需求预测与智能调度
大数据·数据库·人工智能·机器学习