不对称催化(三)- 动态动力学拆分&动态动力学不对称转化

一、动力学拆分的基本概念:

动力学拆分的最大理论产率为50%,通过的差异可以将两个对映异构体转化为不同构型的产物,通常情况下使用两个不同反应路径来实现。但是化学家们提供了一个更加实用的方法,通过底物的构型变化实现高于50%的产率,这种方法被称为动态动力学拆分(DKR)

DKR 将动力学拆分与一个将手性底物进行通过非手性中间体(和过渡态的快速原位外消旋化过程耦合起来。随着反应较快的底物对映体通过一个对映选择性的拆分过程不断地转化为产物,(底物的两个对映体之间的)平衡总是通过一个动态的外消旋化过程进行调节。 外消旋化过程是热力学有利的,因为两种对映体混合时造成了熵的增加

跟动力学拆分一样,反应较快的对映体的速率()必须比较慢的对映体的速率()快得多。当 > 20 时可以得到非常好的结果。**一个成功的动态动力学拆分的典型条件是外消旋化过程的应该以大于或等于催化不对称过程的速率(即)进行。**然而,当非常高时,即使也可能得到高ee 值的产物。

除此之外,如果,DKR 会比经典动力学拆分获得更高的产物对映体过量,因为

连续不断的外消旋化过程会防止阻碍动力学拆分其中一个底物对映体的累积这一过程的发生。

相关推荐
Power20246665 分钟前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k9 分钟前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫14 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班28 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k29 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr38 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客5971 小时前
Transformer和BERT的区别
深度学习·bert·transformer
多吃轻食1 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
香菜大丸1 小时前
链表的归并排序
数据结构·算法·链表