ElasticSearch批处理

在刚才的新增当中,我们是一次新增一条数据。那么如果你将来的数据库里有数千上万的数据,你一次新增一个,那得多麻烦。所以我们还要学习一下批量导入功能。

也就是说批量的把数据库的数据写入索引库。那这里的需求是,首先利用mybatisplus去批量查询酒店数据,然后将查询到的酒店数据,也就是hotel把它转换成我们的hotelDoc文档类型。最后再利用我们的这个Bulk批处理方式实现批量新增:

java 复制代码
@Test
void testCreateHotelIndex() throws IOException{
//创建索引库 CreateIndexReqeust
//1、创建Request对象:
CreateIndexRequest request = new CreateIndexRequest("hotel");
//2、请求参数:
request.source(MAPPING_TEMPLATE, XContentType.JSON);
//3、发送请求
client.indices().create(request,RequestOptions.DEFAULT);
}

//1、创建DeleteIndexRequset
DeleteIndexReqeust reqeust = new DeleteIndexReqeust("hotel");
client.indices().delete(reqeust. ReqeustOptions.DEFAULT);

//判读索引库是否存在:
GetIndexReqeust request = new GetIndexRequest("hotel");

boolean exists = client.indices().exists(reqeust, RequestOptions.DEFAULT);





@Test
void testBulkRequest() throws IOException{

	List<Hotel> hotels = hoteService.list();
	BulkRequest request = new BulkRequest();
	for(Hotel hotel : hotels){
		HotelDoc hotelDoc = new HotelDoc(hotel);
		request.add(new IndexRequest("hotel"))
		             .id(hotelDoc.getId().toString())
		             .source(JSON.toJSONString(hotelDoc), XContentType.JSON);
	}
	//	 发送请求
	client.bulk(request,RequestOptions.DEFAULT);



}

用Stream+Map转换更优雅:

java 复制代码
@Test
void testBulkRequest() throws IOException {
    List<Hotel> hotels = hoteService.list();
    BulkRequest request = new BulkRequest();
    
    hotels.stream()
          .map(hotel -> new HotelDoc(hotel))
          .forEach(hotelDoc -> {
              try {
                  request.add(new IndexRequest("hotel")
                                .id(hotelDoc.getId().toString())
                                .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
              } catch (IOException e) {
                  // Handle exception
                  e.printStackTrace();
              }
          });
          
    client.bulk(request, RequestOptions.DEFAULT);
}

其实是++++把多个 IndexRequest的请求合并到BulkRequest 对象里++++,然后一次性完成提交,这种就叫批处理,确实没有什么新东西, 就是把以前的那种新增的代码给它合到一起去提交了。

接下来我们就来学习第一种全文检索查询。全文检索查询它会对用户输入的内容做分词以后进行匹配。比较常见的用于这个搜索框的这种搜索

++++match和multi_match的区别是什么?一个是根据单字段查询,一个是根据多字段。而multi_match参与查询的字段越多,性能越差,建议利用copy to把多个要查的字段拷贝到一个字段当中++++

相关推荐
火火PM打怪中2 小时前
产品经理如何绘制服务蓝图(Service Blueprint)
大数据·产品经理
Elastic 中国社区官方博客10 小时前
在 Windows 上使用 Docker 运行 Elastic Open Crawler
大数据·windows·爬虫·elasticsearch·搜索引擎·docker·容器
云和数据.ChenGuang11 小时前
运维技术教程之Jenkins的秘钥设置
运维·servlet·jenkins·自动化监控·运维技术教程
谢白羽11 小时前
jenkins搭建笔记
运维·笔记·jenkins
土小帽软件测试11 小时前
docker安装、启动jenkins服务,创建接口自动化定时任务(mac系统)
docker·容器·jenkins
世纪摆渡人11 小时前
部署-k8s和docker、jenkins的区别和联系
docker·kubernetes·jenkins
一切顺势而行12 小时前
Flink cdc 使用总结
大数据·flink
淦暴尼14 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
Ashlee_code15 小时前
裂变时刻:全球关税重构下的券商交易系统跃迁路线图(2025-2027)
java·大数据·数据结构·python·云原生·区块链·perl
Flink_China15 小时前
淘天AB实验分析平台Fluss落地实践:更适合实时OLAP的消息队列
大数据·flink