ElasticSearch批处理

在刚才的新增当中,我们是一次新增一条数据。那么如果你将来的数据库里有数千上万的数据,你一次新增一个,那得多麻烦。所以我们还要学习一下批量导入功能。

也就是说批量的把数据库的数据写入索引库。那这里的需求是,首先利用mybatisplus去批量查询酒店数据,然后将查询到的酒店数据,也就是hotel把它转换成我们的hotelDoc文档类型。最后再利用我们的这个Bulk批处理方式实现批量新增:

java 复制代码
@Test
void testCreateHotelIndex() throws IOException{
//创建索引库 CreateIndexReqeust
//1、创建Request对象:
CreateIndexRequest request = new CreateIndexRequest("hotel");
//2、请求参数:
request.source(MAPPING_TEMPLATE, XContentType.JSON);
//3、发送请求
client.indices().create(request,RequestOptions.DEFAULT);
}

//1、创建DeleteIndexRequset
DeleteIndexReqeust reqeust = new DeleteIndexReqeust("hotel");
client.indices().delete(reqeust. ReqeustOptions.DEFAULT);

//判读索引库是否存在:
GetIndexReqeust request = new GetIndexRequest("hotel");

boolean exists = client.indices().exists(reqeust, RequestOptions.DEFAULT);





@Test
void testBulkRequest() throws IOException{

	List<Hotel> hotels = hoteService.list();
	BulkRequest request = new BulkRequest();
	for(Hotel hotel : hotels){
		HotelDoc hotelDoc = new HotelDoc(hotel);
		request.add(new IndexRequest("hotel"))
		             .id(hotelDoc.getId().toString())
		             .source(JSON.toJSONString(hotelDoc), XContentType.JSON);
	}
	//	 发送请求
	client.bulk(request,RequestOptions.DEFAULT);



}

用Stream+Map转换更优雅:

java 复制代码
@Test
void testBulkRequest() throws IOException {
    List<Hotel> hotels = hoteService.list();
    BulkRequest request = new BulkRequest();
    
    hotels.stream()
          .map(hotel -> new HotelDoc(hotel))
          .forEach(hotelDoc -> {
              try {
                  request.add(new IndexRequest("hotel")
                                .id(hotelDoc.getId().toString())
                                .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
              } catch (IOException e) {
                  // Handle exception
                  e.printStackTrace();
              }
          });
          
    client.bulk(request, RequestOptions.DEFAULT);
}

其实是++++把多个 IndexRequest的请求合并到BulkRequest 对象里++++,然后一次性完成提交,这种就叫批处理,确实没有什么新东西, 就是把以前的那种新增的代码给它合到一起去提交了。

接下来我们就来学习第一种全文检索查询。全文检索查询它会对用户输入的内容做分词以后进行匹配。比较常见的用于这个搜索框的这种搜索

++++match和multi_match的区别是什么?一个是根据单字段查询,一个是根据多字段。而multi_match参与查询的字段越多,性能越差,建议利用copy to把多个要查的字段拷贝到一个字段当中++++

相关推荐
lucky_syq14 分钟前
Flume和Kafka的区别?
大数据·kafka·flume
AI_NEW_COME36 分钟前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
VinciYan1 小时前
基于Jenkins+Docker的自动化部署实践——整合Git与Python脚本实现远程部署
python·ubuntu·docker·自动化·jenkins·.net·运维开发
it噩梦1 小时前
es 中 terms set 使用
大数据·elasticsearch
中科岩创1 小时前
中科岩创边坡自动化监测解决方案
大数据·网络·物联网
DolphinScheduler社区2 小时前
作业帮基于 Apache DolphinScheduler 3_0_0 的缺陷修复与优化
大数据
SeaTunnel2 小时前
京东科技基于 Apache SeaTunnel 复杂场景适配 #数据集成
大数据
喝醉酒的小白3 小时前
Elasticsearch 配置文件
大数据·elasticsearch·搜索引擎
一只敲代码的猪4 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
智慧化智能化数字化方案4 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南