[NeurIPS-23] GOHA: Generalizable One-shot 3D Neural Head Avatar

[pdf](https://arxiv.org/pdf/2306.08768 "pdf") \| [proj](https://research.nvidia.com/labs/lpr/one-shot-avatar/ "proj") \| [code](https://github.com/NVlabs/GOHA "code")

  • 本文提出一种基于单图的可驱动虚拟人像重建框架。
  • 基于3DMM给粗重建、驱动结果,基于神经辐射场给细粒度平滑结果。

方法

  • 给定源图片I_s和目标图片I_t,希望生成图片I_o具有源图片ID和目标图片表情位姿。本文提出三个分支:
    • 规范分支(canonical branch):生成具有标准表情和位姿的粗3D人像;
    • 外观分支(appearance branch):捕捉源图像中的外观细节;
    • 表情分支(expression branch):建模并迁移目标图像的表情;
  • 整体框架如下:
  • 从消融实验上看,规范tri-plane T_c保留了源图片ID,表情tri-plane T_e保留了目标图像表情,外观tri-plane T_p保留了外观细节。

基于规范分支的粗建模

  • 编码器E_c(Fine-tune SegFormer)将源图片I_s映射为tri-plane T_c。
  • 通过3DMM对源图像建粗模,渲染具有标准表情和姿态的图像I_neu和掩码M_neu;
  • 训练目标是3DMM粗模渲染图像I_neu和T_c渲染图像I_c的L1和LPIPS损失,具体如下:

基于外观分支的细节建模

  • 通过T_c拿到渲染图像对应的深度图;
  • 通过编码器E_p得到源图像的2D特征,每个像素具有32维特征;
  • 升维(Lifting):通过深度图将2D特征反投影至3D;
  • 光栅化(Rasterization):将3D点云转换为tri-plane T_p。对T_p任意平面上的一点,计算其最近的点云,并将该点云特征赋值给平面上一点。

基于表情分支的表情建模

  • 基于源图像的3DMM粗模 + 目标图像的表情,渲染得到正面视角图像I_exp。
  • 通过编码器E_e,得到表情tri-plane T_e

训练

  • 两阶段训练,第一阶段不包括超分模块,使用重建损失训练:
  • 第二阶段冻结其他部分,fine-tune超分模块,使用第一阶段损失和对抗损失。

实验

相关推荐
Fairy要carry1 天前
面试-Encoder-Decoder预训练思路
人工智能
杭州泽沃电子科技有限公司1 天前
“不速之客”的威胁:在线监测如何筑起抵御小动物的智能防线
人工智能·在线监测
MistaCloud1 天前
Pytorch进阶训练技巧(二)之梯度层面的优化策略
人工智能·pytorch·python·深度学习
农夫山泉2号1 天前
【rk】——rk3588推理获得logits
人工智能·rk3588·ppl
HaiLang_IT1 天前
基于图像处理的的蔬菜病害检测方法研究与实现
图像处理·人工智能
静听松涛1331 天前
AI成为科学发现的自主研究者
人工智能
爱吃肉的鹏1 天前
使用Flask在本地调用树莓派摄像头
人工智能·后端·python·flask·树莓派
3DVisionary1 天前
告别传统检具:蓝光3D扫描开启精密模具“数字化质检”新模式
人工智能·3d·数字化转型·质量控制·蓝光3d扫描·精密模具·可溯源
deephub1 天前
RAG 检索模型如何学习:三种损失函数的机制解析
人工智能·深度学习·损失函数·信息检索·rag
方见华Richard1 天前
伦理量子信息学:九元原子的量子信息实现
人工智能·经验分享·交互·原型模式·空间计算