Python中使用Gradient Boosting Decision Trees (GBDT)进行特征重要性分析

在机器学习中,了解哪些特征对模型的预测有重要影响是至关重要的。这不仅帮助我们理解模型的决策过程,还可以指导我们进行特征选择,从而提高模型的效率和准确性。Gradient Boosting Decision Trees(GBDT)是一种强大的集成学习方法,它通过组合多个决策树的预测来提高性能。GBDT也提供了衡量特征重要性的直观方式,这是通过观察每个特征在构建决策树时的使用频率和贡献程度来完成的。

本博客将通过几个代码示例,展示如何使用Python中的​​scikit-learn​​库来训练GBDT模型,并进行特征重要性分析。

准备数据

首先,我们需要准备数据。在这里,我们将使用​​scikit-learn​​内置的波士顿房价数据集作为示例。

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

# 加载数据
boston = load_boston()
X, y = boston.data, boston.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

训练一个GBDT模型

接下来,让我们使用​​GradientBoostingRegressor​​来训练一个GBDT模型。

from sklearn.ensemble import GradientBoostingRegressor

# 初始化和训练模型
gbdt = GradientBoostingRegressor(random_state=42)
gbdt.fit(X_train, y_train)

特征重要性分析

一旦模型被训练,我们可以通过查看​​feature_importances_​​属性来分析各个特征的重要性。

# 获取特征重要性
feature_importance = gbdt.feature_importances_

# 打印每个特征的重要性
for i, importance in enumerate(feature_importance):
    print(f"Feature {boston.feature_names[i]}: {importance}")

可视化特征重要性

为了更直观地理解特征重要性,我们可以将其可视化。

import matplotlib.pyplot as plt
import numpy as np

# 对特征重要性进行排序
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5

# 绘制条形图
plt.figure(figsize=(12, 6))
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, np.array(boston.feature_names)[sorted_idx])
plt.title('Feature Importance (GBDT)')
plt.xlabel('Relative Importance')
plt.ylabel('Feature')
plt.show()

使用SHAP值进行深入特征重要性分析

尽管GBDT提供了一种衡量特征重要性的方法,但SHAP(SHapley Additive exPlanations)值提供了一种更深入的分析特征对模型预测影响的方法。SHAP值基于博弈论,目标是解释每个特征对模型预测的贡献。

import shap

# 计算SHAP值
explainer = shap.TreeExplainer(gbdt)
shap_values = explainer.shap_values(X_train)

# 可视化第一个样本的SHAP值
shap.initjs()
shap.force_plot(explainer.expected_value, shap_values[0,:], X_train[0,:], feature_names=boston.feature_names)

通过上述代码,我们不仅能看到哪些特征对模型预测最重要,而且还能了解每个特征是如何影响每个单独预测的。

总结

通过GBDT模型,我们不仅能够建立强大的预测模型,还能深入了解哪些特征在模型中扮演着重要角色。特征重要性分析帮助我们理解模型的决策过程,优化特征选择,提高模型的性能。而SHAP值的引入,则进一步深化了我们对模型预测背后影响因素的理解

相关推荐
阿俊仔(摸鱼版)2 分钟前
Python 常用运维模块之Shutil 模块
linux·服务器·python·自动化·云服务器
MarsBighead4 分钟前
(二)PosrgreSQL: Python3 连接Pgvector出错排查
python·postgresql·向量数据库·pgvector
可涵不会debug8 分钟前
C语言文件操作:标准库与系统调用实践
linux·服务器·c语言·开发语言·c++
深蓝海拓24 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
无须logic ᭄32 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
百流44 分钟前
scala文件编译相关理解
开发语言·学习·scala
Channing Lewis1 小时前
flask常见问答题
后端·python·flask
Channing Lewis1 小时前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月2 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉