【MATLAB源码-第200期】基于matlab的鸡群优化算法(CSO)机器人栅格路径规划,输出做短路径图和适应度曲线。

操作环境:

MATLAB 2022a

1 、算法描述

鸡群优化算法(Chicken Swarm Optimization,简称CSO)是一种启发式搜索算法,它的设计灵感来源于鸡群的社会行为。这种算法由Xian-bing Meng等人于2014年提出,旨在解决复杂的优化问题,特别是那些传统优化算法难以处理的非线性、高维问题。

1. 算法背景与灵感来源

鸡群优化算法的设计灵感来源于鸡群的社会结构和行为模式。在自然界中,鸡群具有一定的社会等级结构,通常由一个或多个雄性鸡(公鸡)领导,下面是母鸡和小鸡。这种等级制度决定了鸡群的觅食行为和社会互动。公鸡保护群体并领导寻找食物,母鸡则跟随公鸡并照顾小鸡。研究者发现,这种社会结构可以用来模拟优化过程中的信息共享和集体学习机制。

2. 算法原理

CSO算法首先将待优化问题中的解候选视为鸡群中的个体,根据其适应度(即解的质量),将这些个体分为不同的社会角色:公鸡、母鸡、小鸡和观察鸡。

  • 公鸡(Rooster):适应度最好的几个个体,负责引导群体的搜索方向。
  • 母鸡(Hen):适应度次优的个体,它们跟随公鸡并在公鸡发现的资源区域进行搜索。
  • 小鸡(Chick):适应度较低的个体,它们依赖母鸡获得保护和食物,学习母鸡的行为。
  • 观察鸡(Observer):其余的个体,自由搜索并观察其它鸡的行为,以决定未来的行动策略。
2.1 个体更新策略
  • 公鸡的位置更新策略是基于当前位置,加上一个随机扰动,模拟其在领地内寻找更好资源的行为。
  • 母鸡的位置更新则是基于它们与公鸡的相对位置,加上随机扰动,模拟母鸡跟随公鸡并在公鸡确定的区域内进行搜索的行为。
  • 小鸡的位置更新是依赖于母鸡的位置,这模仿了小鸡跟随母鸡的行为。
  • 观察鸡的位置更新完全随机,模拟它们在整个搜索空间内自由探索的行为。
2.2 群体交互

鸡群中的个体通过模拟鸡群的社会互动来改善自己的解。公鸡和母鸡的成功探索可以通过社会学习传播给小鸡和观察鸡,从而整个群体的搜索效率和质量得以提升。这种模式促进了信息的有效传播和集体智慧的形成。

3. 算法流程

  1. 初始化:随机生成初始鸡群,即解的候选集。
  2. 评估:计算每只鸡的适应度。
  3. 角色分配:根据适应度对鸡群成员进行角色分配。
  4. 位置更新:根据各自的策略更新公鸡、母鸡、小鸡和观察鸡的位置。
  5. 适应度再评估:更新位置后,重新评估整个鸡群的适应度。
  6. 终止条件检查:如果达到最大迭代次数或满足其他终止条件(如解的质量达到预期目标),则停止迭代;否则,回到第3步继续迭代。

4. 算法优势与应用

CSO算法由于其独特的社会行为模拟,特别适用于那些需要全局搜索和细致调整的优化问题。这种算法在多目标优化、动态优化以及需要适应复杂、变化环境的任务中表现优异。例如,在工程设计、资源分配、路径规划等领域,CSO算法都有广泛的应用前景。

2 、仿真结果演示

3 、关键代码展示

4 、MATLAB 源码获取

V

点击下方名片

相关推荐
星马梦缘42 分钟前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法
中华小当家呐44 分钟前
算法之常见八大排序
数据结构·算法·排序算法
沐怡旸1 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试
一只懒洋洋2 小时前
K-meas 聚类、KNN算法、决策树、随机森林
算法·决策树·聚类
方案开发PCBA抄板芯片解密3 小时前
什么是算法:高效解决问题的逻辑框架
算法
songx_993 小时前
leetcode9(跳跃游戏)
数据结构·算法·游戏
小白狮ww4 小时前
RStudio 教程:以抑郁量表测评数据分析为例
人工智能·算法·机器学习
AAA修煤气灶刘哥4 小时前
接口又被冲崩了?Sentinel 这 4 种限流算法,帮你守住后端『流量安全阀』
后端·算法·spring cloud
kk”4 小时前
C语言快速排序
数据结构·算法·排序算法
纪元A梦5 小时前
贪心算法应用:基因编辑靶点选择问题详解
算法·贪心算法