【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 打家劫舍 II(难度⭐⭐)(67)

1. 题目解析

题目链接:213. 打家劫舍 II

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

这个问题是经典的"打家劫舍"问题的变种,原问题是在单排房屋中进行偷窃,而这个问题则是在环形排列的房屋中进行。环形排列的特点在于首尾相连,这为我们设计算法带来了新的挑战。然而,通过一些巧妙的转换,我们可以将这个问题分解为两个单排问题来解决。

首先,我们需要明确环形排列带来的限制:由于首尾相连,我们不能同时偷取第一个和最后一个房屋,因为这会导致连续的偷窃行为被发现。因此,我们可以将问题拆分为两种情况来考虑:

  1. 偷取第一个房屋时的最大金额(设为x):在这种情况下,我们不能偷取最后一个房屋,因为这将构成一个闭环。因此,我们的搜索范围变成了从第一个房屋到倒数第二个房屋,即区间[0, n-2]。

  2. 不偷取第一个房屋时的最大金额(设为y):在这种情况下,我们可以偷取最后一个房屋,因为第一个房屋已经被排除在外,不会构成闭环。因此,我们的搜索范围变成了从第二个房屋到最后一个房屋,即区间[1, n-1]。

通过分别计算这两种情况下的最大金额,我们可以得到两个结果:x和y。最终,我们只需要取这两个结果中的较大值,即为在环形排列的房屋中进行偷窃能够获得的最大金额。

3.代码编写

cpp 复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        return max(nums[0] + rob1(nums, 2, n - 2), rob1(nums, 1, n - 1));
    }
    int rob1(vector<int>& nums, int left, int right) {
        if(left > right) return 0;
        int n = nums.size();
        vector<int> f(n), g(n);
        f[left] = nums[left]; // 初始化
        for (int i = left + 1; i <= right; i++) {
            f[i] = g[i - 1] + nums[i];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[right], g[right]);
    }
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~

相关推荐
C雨后彩虹4 小时前
任务最优调度
java·数据结构·算法·华为·面试
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
微露清风6 小时前
系统性学习C++-第十八讲-封装红黑树实现myset与mymap
java·c++·学习
Niuguangshuo6 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
a3158238067 小时前
Android 大图显示策略优化显示(一)
android·算法·图片加载·大图片
CSARImage7 小时前
C++读取exe程序标准输出
c++
一只小bit7 小时前
Qt 常用控件详解:按钮类 / 显示类 / 输入类属性、信号与实战示例
前端·c++·qt·gui
一条大祥脚7 小时前
26.1.9 轮廓线dp 状压最短路 构造
数据结构·c++·算法
鲨莎分不晴7 小时前
反向传播的数学本质:链式法则与动态规划的完美共舞
算法·动态规划