Problem: 146. LRU 缓存
文章目录
题目描述
思路
主要说明大致思路,具体实现看代码。
1.为了实现题目中的O(1)时间复杂度的get与put方法,我们利用哈希表和双链表 的结合,将key作为键,对应的链表的节点作为值(也就是在此处我们用一个节点类作为值);
2.定义双链表 的节点类,其中包含每次put的键与对应的值,还包括前驱、后驱指针;
3.编写双链表的实现类,并实现:
3.1.初始化一个双链表(创建虚拟头、尾节点;由于我们要实现将最就不使用的节点删除,我们在此使用尾插法 即每次链表尾部位最近使用的,表头为最久不适用的);
3.2.实现尾插一个节点;
3.3.实现删除一个给定的节点;
3.4.实现从表头删除一个节点(删除最久不使用的节点)
3.5.返回链表的长度
4.实现LRUCache类:
4.1. 创建哈希表map与双链表cache;4.2. 为了不直接在get与put中对map与cache操作带来麻烦(主要操作是同步在mao中添加key同时在cache中增、删、改对应节点的值),我们封装实现一些API(具体操作实现看代码)
4.3. 实现get与put方法(直接看代码)
复杂度
时间复杂度:
O ( n ) O(n) O(n);其中 n n n为要操作的次数
空间复杂度:
O ( n ) O(n) O(n)
Code
java
/**
* Node class
*/
class Node {
public int key;
public int val;
public Node next;
public Node prev;
public Node(int k, int v) {
this.key = k;
this.val = v;
}
}
class DoubleList {
//The dummy node of head and tail to a double linked list
private Node head;
private Node tail;
//The size of a linked list
private int size;
public DoubleList() {
//Initialize the element of double linked list
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
size = 0;
}
// Add node x at the end of the list, time O(1)
// Tail insertion method of bidirectional linked list
// with virtual head and tail nodes
public void addLast(Node x) {
x.prev = tail.prev;
x.next = tail;
tail.prev.next = x;
tail.prev = x;
size++;
}
// Delete the x node in the linked list (x must exist)
// Since it is a double-linked list and given to the target Node,
// time O(1)
public void remove(Node x) {
x.prev.next = x.next;
x.next.prev = x.prev;
size--;
}
// Delete the first node in the linked list
// and return the node, time O(1)
public Node removeFirst() {
if (head.next == null) {
return null;
}
Node first = head.next;
remove(first);
return first;
}
// Return list length, time O(1)
public int size() {
return size;
}
}
class LRUCache {
private HashMap<Integer, Node> map;
private DoubleList cache;
//Max capacity
private int cap;
public LRUCache(int capacity) {
this.cap = capacity;
map = new HashMap<>();
cache = new DoubleList();
}
// Upgrade a key to the most recently used
private void makeRecently(int key) {
Node x = map.get(key);
// Delete this node from the linked list first
cache.remove(x);
// Move back to the end of the line
cache.addLast(x);
}
// Add the most recently used element
private void addRecently(int key, int val) {
Node x = new Node(key, val);
// The end of the list is the most recently used element
cache.addLast(x);
// Add the mapping of the key to the map
map.put(key, x);
}
// Delete a key
private void deleteKey(int key) {
Node x = map.get(key);
// Delete from the linked list
cache.remove(x);
// Delete from map
map.remove(key);
}
// Delete the element that has been unused the longest
private void removeLeastRecently() {
// The first element at the head of the list is the one
// that has been unused for the longest time
Node deletedNode = cache.removeFirst();
// Delete its key from the map
int deleteKey = deletedNode.key;
map.remove(deleteKey);
}
public int get(int key) {
if (!map.containsKey(key)) {
return -1;
}
// Upgrade the data to the most recently used
makeRecently(key);
return map.get(key).val;
}
public void put(int key, int value) {
if (map.containsKey(key)) {
// Delete old data
deleteKey(key);
// The newly inserted data is the latest data
addRecently(key, value);
return;
}
if (cap == cache.size()) {
// Delete the element that has been unused the longest
removeLeastRecently();
}
// Add as recently used element
addRecently(key, value);
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/