深度学习入门(6) - 3DV 三维视觉

3DV

Two focus : predicting 3d shapes from image and processing 3d input data

Representations of 3D shape

Depth map

gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

We can use Fully Convolutional network to predict the depth

problem : Scale / Depth Ambiguity

-> Use Scale invariant loss

Surface Normals

give a vector giving normal vector to the object in the world for that pixel

We can use Fully Convolutional network to predict Surface Normals

loss: x y ∣ x ∣ ∣ y ∣ \frac{x y}{|x||y|} ∣x∣∣y∣xy

Also can't represent the occluded objects

Voxel Grid

Represent a shape with a V × V × V V \times V \times V V×V×V grid of occupancies (just like minecraft 😃

Problems: Need high spatial resolution to capture fine structures, scaling to high resolutions in not trival

Use 3D convolution to do classification

We can have the following architecture :

image -> 2D CNN -> fully connected layer -> 3D CNN -> Voxels

but it's expensive

we can use "Voxel Tubes":

We have sacrifice the z-dim spatial information, and the memory usage of Voxel is not affordable.

Solution : Oct-Trees

use voxel grids with heterogenous resolution

Nested Shape Layers

Predict shape as a composition of positive and negative grids

Implicit Surface

learn a function o : R 3 → { 0 , 1 } o: \R^3 \rightarrow \{0,1\} o:R3→{0,1}

to classify arbitrary 3D points as inside / outside the shape

same idea: signed distance function gives Euclidean distance to the surface of the shape

Point Cloud

represent shape as a set of P points in 3D space

nice property: can represent fine structure without huge number of points

bad property: doesn't explicitly represent the surface of the shape

PointNet

Input pointcloud --MLP on each points-> point features --max pooling -> pooled vector --FC-> class score

We want to process pointclouds as sets : order should not matter

Generating Pointcloud Outputs

Loss function (new):

Chamfer distance: sum of L2 distance to each point's nearest neighbor in the other set

Mesh

Triangle Mesh

represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D shape

Faces: Set of triangles over the vertices

We can attach data on verts and interpolate over the whole surface

However, nontrivial to process with neural nets

Pixel2Mesh

key ideas:

  1. iterative mesh refinement

​ Start from initial ellipsoid mesh

  1. Graph Convolution

​ input : Graph with a feature vector attached to every vertex of the graph

​ output : a new feature vector to every vertex

​ f i ′ = W 0 f i + ∑ j ∈ N ( i ) W 1 f j f_i' = W_0f_i + \sum_{j \in N(i)} W_1f_j fi′=W0fi+∑j∈N(i)W1fj

  1. Vertex-Aligned Features

​ For each vertex of the mesh : use camera information to project onto image plane

​ use bilinear interpolation to sample a CNN feature

  1. Loss function

​ Invert meshes to pointclouds then compute loss -> avoid different representation of same graphs causing different loss

Metrics

Chamfer distance on pointclouds

​ sensitive to outliers

F1 score on pointclouds

Precision @t = fraction of predicted points within t of some groud-truth point

Recall @t = fraction of groud-truth points within t of some predicted ponit

F 1 @ t = 2 P r e c i s i o n @ t ∗ R e c a l l @ t P r e c i s i o n @ t + R e c a l l @ t F1@t = 2\frac{Precision @t * Recall @t}{Precision @t + Recall @t} F1@t=2Precision@t+Recall@tPrecision@t∗Recall@t

Cameras: Canonical vs View Coordinates

Problem : Canonical views overfits more often

Dataset

ShapeNet: synthetic, no context
Pix3D: Real image but small

Mesh R-CNN

Mesh deformation gives good results but the topology is fixed by the initial mesh

Approach: Use voxel predictions to create initial mesh prediction

help predict things with holes

add L2 norm as well

Amodal completion: predict occluded parts of the objects

相关推荐
那雨倾城42 分钟前
使用 OpenCV 将图像中标记特定颜色区域
人工智能·python·opencv·计算机视觉·视觉检测
whoarethenext44 分钟前
c/c++的opencv的图像预处理讲解
人工智能·opencv·计算机视觉·预处理
金融小师妹2 小时前
应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因
大数据·人工智能·算法
武子康2 小时前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
广州智造2 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
码农黛兮_462 小时前
4. 文字效果/2D-3D转换 - 3D翻转卡片
3d·html·css3
jndingxin3 小时前
OpenCV CUDA模块中矩阵操作------降维操作
人工智能·opencv
MARS_AI_4 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信
Trent19854 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉