深度学习入门(6) - 3DV 三维视觉

3DV

Two focus : predicting 3d shapes from image and processing 3d input data

Representations of 3D shape

Depth map

gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

We can use Fully Convolutional network to predict the depth

problem : Scale / Depth Ambiguity

-> Use Scale invariant loss

Surface Normals

give a vector giving normal vector to the object in the world for that pixel

We can use Fully Convolutional network to predict Surface Normals

loss: x y ∣ x ∣ ∣ y ∣ \frac{x y}{|x||y|} ∣x∣∣y∣xy

Also can't represent the occluded objects

Voxel Grid

Represent a shape with a V × V × V V \times V \times V V×V×V grid of occupancies (just like minecraft 😃

Problems: Need high spatial resolution to capture fine structures, scaling to high resolutions in not trival

Use 3D convolution to do classification

We can have the following architecture :

image -> 2D CNN -> fully connected layer -> 3D CNN -> Voxels

but it's expensive

we can use "Voxel Tubes":

We have sacrifice the z-dim spatial information, and the memory usage of Voxel is not affordable.

Solution : Oct-Trees

use voxel grids with heterogenous resolution

Nested Shape Layers

Predict shape as a composition of positive and negative grids

Implicit Surface

learn a function o : R 3 → { 0 , 1 } o: \R^3 \rightarrow \{0,1\} o:R3→{0,1}

to classify arbitrary 3D points as inside / outside the shape

same idea: signed distance function gives Euclidean distance to the surface of the shape

Point Cloud

represent shape as a set of P points in 3D space

nice property: can represent fine structure without huge number of points

bad property: doesn't explicitly represent the surface of the shape

PointNet

Input pointcloud --MLP on each points-> point features --max pooling -> pooled vector --FC-> class score

We want to process pointclouds as sets : order should not matter

Generating Pointcloud Outputs

Loss function (new):

Chamfer distance: sum of L2 distance to each point's nearest neighbor in the other set

Mesh

Triangle Mesh

represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D shape

Faces: Set of triangles over the vertices

We can attach data on verts and interpolate over the whole surface

However, nontrivial to process with neural nets

Pixel2Mesh

key ideas:

  1. iterative mesh refinement

​ Start from initial ellipsoid mesh

  1. Graph Convolution

​ input : Graph with a feature vector attached to every vertex of the graph

​ output : a new feature vector to every vertex

​ f i ′ = W 0 f i + ∑ j ∈ N ( i ) W 1 f j f_i' = W_0f_i + \sum_{j \in N(i)} W_1f_j fi′=W0fi+∑j∈N(i)W1fj

  1. Vertex-Aligned Features

​ For each vertex of the mesh : use camera information to project onto image plane

​ use bilinear interpolation to sample a CNN feature

  1. Loss function

​ Invert meshes to pointclouds then compute loss -> avoid different representation of same graphs causing different loss

Metrics

Chamfer distance on pointclouds

​ sensitive to outliers

F1 score on pointclouds

Precision @t = fraction of predicted points within t of some groud-truth point

Recall @t = fraction of groud-truth points within t of some predicted ponit

F 1 @ t = 2 P r e c i s i o n @ t ∗ R e c a l l @ t P r e c i s i o n @ t + R e c a l l @ t F1@t = 2\frac{Precision @t * Recall @t}{Precision @t + Recall @t} F1@t=2Precision@t+Recall@tPrecision@t∗Recall@t

Cameras: Canonical vs View Coordinates

Problem : Canonical views overfits more often

Dataset

ShapeNet: synthetic, no context
Pix3D: Real image but small

Mesh R-CNN

Mesh deformation gives good results but the topology is fixed by the initial mesh

Approach: Use voxel predictions to create initial mesh prediction

help predict things with holes

add L2 norm as well

Amodal completion: predict occluded parts of the objects

相关推荐
刘什么洋啊Zz2 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-3 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默3 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
boooo_hhh5 小时前
深度学习笔记16-VGG-16算法-Pytorch实现人脸识别
pytorch·深度学习·机器学习
AnnyYoung5 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND5 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木6 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳6 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客6 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱6 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全