深度学习入门(6) - 3DV 三维视觉

3DV

Two focus : predicting 3d shapes from image and processing 3d input data

Representations of 3D shape

Depth map

gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

We can use Fully Convolutional network to predict the depth

problem : Scale / Depth Ambiguity

-> Use Scale invariant loss

Surface Normals

give a vector giving normal vector to the object in the world for that pixel

We can use Fully Convolutional network to predict Surface Normals

loss: x y ∣ x ∣ ∣ y ∣ \frac{x y}{|x||y|} ∣x∣∣y∣xy

Also can't represent the occluded objects

Voxel Grid

Represent a shape with a V × V × V V \times V \times V V×V×V grid of occupancies (just like minecraft 😃

Problems: Need high spatial resolution to capture fine structures, scaling to high resolutions in not trival

Use 3D convolution to do classification

We can have the following architecture :

image -> 2D CNN -> fully connected layer -> 3D CNN -> Voxels

but it's expensive

we can use "Voxel Tubes":

We have sacrifice the z-dim spatial information, and the memory usage of Voxel is not affordable.

Solution : Oct-Trees

use voxel grids with heterogenous resolution

Nested Shape Layers

Predict shape as a composition of positive and negative grids

Implicit Surface

learn a function o : R 3 → { 0 , 1 } o: \R^3 \rightarrow \{0,1\} o:R3→{0,1}

to classify arbitrary 3D points as inside / outside the shape

same idea: signed distance function gives Euclidean distance to the surface of the shape

Point Cloud

represent shape as a set of P points in 3D space

nice property: can represent fine structure without huge number of points

bad property: doesn't explicitly represent the surface of the shape

PointNet

Input pointcloud --MLP on each points-> point features --max pooling -> pooled vector --FC-> class score

We want to process pointclouds as sets : order should not matter

Generating Pointcloud Outputs

Loss function (new):

Chamfer distance: sum of L2 distance to each point's nearest neighbor in the other set

Mesh

Triangle Mesh

represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D shape

Faces: Set of triangles over the vertices

We can attach data on verts and interpolate over the whole surface

However, nontrivial to process with neural nets

Pixel2Mesh

key ideas:

  1. iterative mesh refinement

​ Start from initial ellipsoid mesh

  1. Graph Convolution

​ input : Graph with a feature vector attached to every vertex of the graph

​ output : a new feature vector to every vertex

​ f i ′ = W 0 f i + ∑ j ∈ N ( i ) W 1 f j f_i' = W_0f_i + \sum_{j \in N(i)} W_1f_j fi′=W0fi+∑j∈N(i)W1fj

  1. Vertex-Aligned Features

​ For each vertex of the mesh : use camera information to project onto image plane

​ use bilinear interpolation to sample a CNN feature

  1. Loss function

​ Invert meshes to pointclouds then compute loss -> avoid different representation of same graphs causing different loss

Metrics

Chamfer distance on pointclouds

​ sensitive to outliers

F1 score on pointclouds

Precision @t = fraction of predicted points within t of some groud-truth point

Recall @t = fraction of groud-truth points within t of some predicted ponit

F 1 @ t = 2 P r e c i s i o n @ t ∗ R e c a l l @ t P r e c i s i o n @ t + R e c a l l @ t F1@t = 2\frac{Precision @t * Recall @t}{Precision @t + Recall @t} F1@t=2Precision@t+Recall@tPrecision@t∗Recall@t

Cameras: Canonical vs View Coordinates

Problem : Canonical views overfits more often

Dataset

ShapeNet: synthetic, no context
Pix3D: Real image but small

Mesh R-CNN

Mesh deformation gives good results but the topology is fixed by the initial mesh

Approach: Use voxel predictions to create initial mesh prediction

help predict things with holes

add L2 norm as well

Amodal completion: predict occluded parts of the objects

相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习