深度学习入门(6) - 3DV 三维视觉

3DV

Two focus : predicting 3d shapes from image and processing 3d input data

Representations of 3D shape

Depth map

gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

We can use Fully Convolutional network to predict the depth

problem : Scale / Depth Ambiguity

-> Use Scale invariant loss

Surface Normals

give a vector giving normal vector to the object in the world for that pixel

We can use Fully Convolutional network to predict Surface Normals

loss: x y ∣ x ∣ ∣ y ∣ \frac{x y}{|x||y|} ∣x∣∣y∣xy

Also can't represent the occluded objects

Voxel Grid

Represent a shape with a V × V × V V \times V \times V V×V×V grid of occupancies (just like minecraft 😃

Problems: Need high spatial resolution to capture fine structures, scaling to high resolutions in not trival

Use 3D convolution to do classification

We can have the following architecture :

image -> 2D CNN -> fully connected layer -> 3D CNN -> Voxels

but it's expensive

we can use "Voxel Tubes":

We have sacrifice the z-dim spatial information, and the memory usage of Voxel is not affordable.

Solution : Oct-Trees

use voxel grids with heterogenous resolution

Nested Shape Layers

Predict shape as a composition of positive and negative grids

Implicit Surface

learn a function o : R 3 → { 0 , 1 } o: \R^3 \rightarrow \{0,1\} o:R3→{0,1}

to classify arbitrary 3D points as inside / outside the shape

same idea: signed distance function gives Euclidean distance to the surface of the shape

Point Cloud

represent shape as a set of P points in 3D space

nice property: can represent fine structure without huge number of points

bad property: doesn't explicitly represent the surface of the shape

PointNet

Input pointcloud --MLP on each points-> point features --max pooling -> pooled vector --FC-> class score

We want to process pointclouds as sets : order should not matter

Generating Pointcloud Outputs

Loss function (new):

Chamfer distance: sum of L2 distance to each point's nearest neighbor in the other set

Mesh

Triangle Mesh

represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D shape

Faces: Set of triangles over the vertices

We can attach data on verts and interpolate over the whole surface

However, nontrivial to process with neural nets

Pixel2Mesh

key ideas:

  1. iterative mesh refinement

​ Start from initial ellipsoid mesh

  1. Graph Convolution

​ input : Graph with a feature vector attached to every vertex of the graph

​ output : a new feature vector to every vertex

​ f i ′ = W 0 f i + ∑ j ∈ N ( i ) W 1 f j f_i' = W_0f_i + \sum_{j \in N(i)} W_1f_j fi′=W0fi+∑j∈N(i)W1fj

  1. Vertex-Aligned Features

​ For each vertex of the mesh : use camera information to project onto image plane

​ use bilinear interpolation to sample a CNN feature

  1. Loss function

​ Invert meshes to pointclouds then compute loss -> avoid different representation of same graphs causing different loss

Metrics

Chamfer distance on pointclouds

​ sensitive to outliers

F1 score on pointclouds

Precision @t = fraction of predicted points within t of some groud-truth point

Recall @t = fraction of groud-truth points within t of some predicted ponit

F 1 @ t = 2 P r e c i s i o n @ t ∗ R e c a l l @ t P r e c i s i o n @ t + R e c a l l @ t F1@t = 2\frac{Precision @t * Recall @t}{Precision @t + Recall @t} F1@t=2Precision@t+Recall@tPrecision@t∗Recall@t

Cameras: Canonical vs View Coordinates

Problem : Canonical views overfits more often

Dataset

ShapeNet: synthetic, no context
Pix3D: Real image but small

Mesh R-CNN

Mesh deformation gives good results but the topology is fixed by the initial mesh

Approach: Use voxel predictions to create initial mesh prediction

help predict things with holes

add L2 norm as well

Amodal completion: predict occluded parts of the objects

相关推荐
新智元11 分钟前
16 岁天才少年炒掉马斯克,空降华尔街巨头!9 岁上大学,14 岁进 SpaceX
人工智能·openai
martinzh16 分钟前
让AI学会"边做边想":ReAct的实战指南
人工智能
七超AI落地实操18 分钟前
我用AI写Mermaid,差点被逼疯!一个连Gemini都搞不定的“史诗级”排错之旅
人工智能
游戏AI研究所18 分钟前
ComfyUI 里的 Prompt 插值器(prompt interpolation / text encoder 插值方式)的含义和作用!
人工智能·游戏·机器学习·stable diffusion·prompt·aigc
重启的码农20 分钟前
llama.cpp 分布式推理介绍(2) 后端注册机制 (Backend Registration)
c++·人工智能·神经网络
simplejian21 分钟前
从零到GPT:Transformer如何引领大模型时代
人工智能
爱分享的飘哥22 分钟前
第七十三章:AI的“黑箱”迷局:推理链路中的断点与Tensor调试——让模型“交代一切”!
人工智能·可视化·tensor·断点·错误分析·模型调试·推理调试
重启的码农23 分钟前
llama.cpp 分布式推理介绍(1) 远程计算设备 (RPC Device)
c++·人工智能·神经网络
Chirp24 分钟前
BS-RoFormer,目前音频分离SOTA
人工智能·机器学习
hllqkbb35 分钟前
从 SGD 到梯度累积:Epoch、Batch、Step 的关系全解析
开发语言·人工智能·opencv·计算机视觉·batch