【Spring AI】09. ETL 管道

文章目录

ETL Pipeline

提取转换加载 (ETL)框架是检索增强生成 (RAG)中数据处理的支柱。

ETL 管道编排了从原始数据源到结构化向量存储的流程,确保数据以最佳格式存储,以便 AI 模型检索。

RAG 用例是通过从数据体中检索相关信息来增强生成模型的能力,以提高生成输出的质量和相关性。

API 概述


ETL 管道的三个主要组件是

  • DocumentReader :实现Supplier<List>
  • DocumentTransformer :实现Function<List, List>
  • Consumer<List> :实现DocumentWriter
    Document类包含文本和元数据,使用DocumentReader可以基于 PDF、文本文件和其他文档类型创建 Document类。
    要构建一个简单的 ETL 管道,您可以将每种类型的实例链接在一起。

假如我们有这三种 ETL 类型的实例对象

  • PagePdfDocumentReade: DocumentReader的一个实现
  • TokenTextSplitter:DocumentTransformer的一个实现
  • VectorStore: DocumentWriter的一个实现
    使用以下代码,可以结合检索增强生成模式,把基本的数据加载到矢量数据库中。
java 复制代码
vectorStore.accept(tokenTextSplitter.apply(pdfReader.get()));

入门指南


要开始创建一个 Spring AI RAG 应用程序,请按照以下步骤进行:

  1. 下载最新的 Spring CLI Release,并按照 installation instructions 进行安装。

  2. 要创建一个简单的基于 OpenAI 的应用程序,请使用以下命令:

    shell 复制代码
    spring boot new --from ai-rag --name myrag
  3. 查看生成的README.md文件,了解如何获取 OpenAI API 密钥并运行您的第一个 AI RAG 应用程序。

ETL 接口和实现

ETL 管道由以下接口和实现组成。详细的 ETL 类图在下面的 ETL 类图部分 中显示。

DocumentReader

提供来自不同来源的文档资源。

java 复制代码
public interface DocumentReader extends Supplier<List<Document>> {

}
JsonReader

JsonReader解析 JSON 格式的文档。

例子:

java 复制代码
@Component
public class MyAiApp {

	@Value("classpath:bikes.json") // This is the json document to load
	private Resource resource;

	List<Document> loadJsonAsDocuments() {
		JsonReader jsonReader = new JsonReader(resource, "description");
		return jsonReader.get();
	}
}
TextReader

该TextReader处理纯文本文档。

例子:

java 复制代码
@Component
public class MyTextReader {

    @Value("classpath:text-source.txt") // This is the text document to load
	private Resource resource;

	List<Document> loadText() {
		TextReader textReader = new TextReader(resource);
		textReader.getCustomMetadata().put("filename", "text-source.txt");

		return textReader.get();
    }
}
PagePdfDocumentReader

该PagePdfDocumentReader使用 Apache PdfBox 库来解析 PDF 文档

例子:

java 复制代码
@Component
public class MyPagePdfDocumentReader {

	List<Document> getDocsFromPdf() {

		PagePdfDocumentReader pdfReader = new PagePdfDocumentReader("classpath:/sample1.pdf",
				PdfDocumentReaderConfig.builder()
					.withPageTopMargin(0)
					.withPageExtractedTextFormatter(ExtractedTextFormatter.builder()
						.withNumberOfTopTextLinesToDelete(0)
						.build())
					.withPagesPerDocument(1)
					.build());

		return pdfReader.get();
    }

}
ParagraphPdfDocumentReader

该ParagraphPdfDocumentReader使用 PDF 目录(例如 TOC)信息将输入的 PDF 拆分为文本段落,并为每个段落输出一个Document。注意:并非所有 PDF 文档都包含 PDF 目录。

例子:

java 复制代码
@Component
public class MyPagePdfDocumentReader {

	List<Document> getDocsFromPdfwithCatalog() {

        new ParagraphPdfDocumentReader("classpath:/sample1.pdf",
                PdfDocumentReaderConfig.builder()
                    .withPageTopMargin(0)
                    .withPageExtractedTextFormatter(ExtractedTextFormatter.builder()
                        .withNumberOfTopTextLinesToDelete(0)
                        .build())
                    .withPagesPerDocument(1)
                    .build());

		return pdfReader.get();
    }
}
TikaDocumentReader

TikaDocumentReader使用 Apache Tika 从各种文档格式中提取文本,如 PDF、DOC/DOCX、PPT/PPTX 和 HTML。有关支持的格式的详细列表,请参考 Tika documentation。

例子:

java 复制代码
@Component
public class MyTikaDocumentReader {

    @Value("classpath:/word-sample.docx") // This is the word document to load
	private Resource resource;

	List<Document> loadText() {
        TikaDocumentReader tikaDocumentReader = new TikaDocumentReader(resourceUri);
        return tikaDocumentReader.get();
    }
}

DocumentTransformer

作为处理工作流程的一部分,用于转换文档。

java 复制代码
public interface DocumentTransformer extends Function<List<Document>, List<Document>> {
TextSplitter

TextSplitter是一个抽象基类,帮助将文档分割以适应 AI 模型的上下文窗口。

TokenTextSplitter

在保持标记级完整性的同时拆分文档。

ContentFormatTransformer

确保所有文档中的内容格式统一。

KeywordMetadataEnricher

关键元数据增强文档。

SummaryMetadataEnricher

为增强检索而为文档添加摘要元数据。

DocumentWriter

管理 ETL 过程的最后阶段,将文档进行存储。

java 复制代码
public interface DocumentWriter extends Consumer<List<Document>> {

}
FileDocumentWriter

将文档持久化到文件中。

VectorStore

与各种向量存储进行集成。请参阅 05. 向量数据库 章节以获取完整列表。

ETL 类图

以下类图展示了 ETL 接口和实现。


相关推荐
开发者每周简报8 分钟前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神12 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技40 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1361 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
日出等日落1 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
三木吧1 小时前
开发微信小程序的过程与心得
人工智能·微信小程序·小程序
whaosoft-1431 小时前
w~视觉~3D~合集5
人工智能
猫头虎1 小时前
新纪天工 开物焕彩:重大科技成就发布会参会感
人工智能·开源·aigc·开放原子·开源软件·gpu算力·agi
正在走向自律2 小时前
京东物流营销 Agent:智能驱动,物流新篇(13/30)
人工智能·ai agent·ai智能体·京东物流agent