结构方程模型【SEM】:非线性、非正态、交互作用及分类变量分析

**张老师(研究员),**长期从事R语言结构方程模型、群落生态学、保护生物学、景观生态学和生态模型方面的研究和教学工作,已发表了多篇论文,拥有丰富的科研及实践经验。

利用结构方程模型建模往往遇到很多'特殊'情况:1)变量间为非直线关系;2)变量间存在交互作用;3)数据不满足正态分布;4)变量为非正态类型的数值变量,如0,1数据(符合二项分布)和计数数据(符合泊松分布)等等;5)外生或内生变量为分类变量,如男女、高中低、不同土地类型或森林类型等。在《基于R语言结构方程模型》中我们对变量非直线关系和非正态变量及数据分析做了介绍,但大家在遇到这些情况时仍然存在很大困惑。这些情况往往需要进行特殊处理,本次课程将针对上述问题进行更深入的讲解,使大家在利用结构方程模型建模遇到上述情况时能够从容面对。

一:非线性关系及交互作用分析

1、外生变量非线性关系处理

2、内生变量非线性关系处理

3、变量间存在交互作用关系分析

二:非正态数据/变量分析

1、数据/变量非正态问题

2、非正态数据分析

3、非正态变量变量分析

三:分类变量分析

1、分类变量介绍

2、外生变量为分类变量分析

3、内生变量为分类变量分析

原文链接https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247686676&idx=6&sn=d1ee4554f1c66390a763df58d3e0c5be&chksm=fa774529cd00cc3f4b6b55ffd19b16184914ca4b2298a37e2ad23eec787ff34c120f40c1e7fb&token=1275762367&lang=zh_CN#rd

相关推荐
救救孩子把2 小时前
Dogs vs. Cats:从零到一的图像分类数据集
人工智能·分类·数据挖掘
databook3 小时前
拒绝“凭感觉”:用回归分析看透数据背后的秘密
python·数据挖掘·数据分析
Christo33 小时前
2024《Three-way clustering: Foundations, survey and challenges》
人工智能·算法·机器学习·数据挖掘
2501_941329724 小时前
基于DETR的血细胞显微图像检测与分类方法研究【原创】_1
人工智能·数据挖掘
Christo35 小时前
2022-《Deep Clustering: A Comprehensive Survey》
人工智能·算法·机器学习·数据挖掘
serve the people6 小时前
TensorFlow 2.0 手写数字分类教程之SparseCategoricalCrossentropy 核心原理(一)
人工智能·分类·tensorflow
LDG_AGI8 小时前
【推荐系统】深度学习训练框架(十七):TorchRec之KeyedJaggedTensor
人工智能·pytorch·深度学习·机器学习·数据挖掘·embedding
serve the people8 小时前
TensorFlow 2.0 手写数字分类教程之SparseCategoricalCrossentropy 核心原理(二)
人工智能·分类·tensorflow
Christo39 小时前
2024《A Rapid Review of Clustering Algorithms》
人工智能·算法·机器学习·数据挖掘
listhi5209 小时前
支持向量机多分类解决方案
算法·支持向量机·分类