结构方程模型【SEM】:非线性、非正态、交互作用及分类变量分析

**张老师(研究员),**长期从事R语言结构方程模型、群落生态学、保护生物学、景观生态学和生态模型方面的研究和教学工作,已发表了多篇论文,拥有丰富的科研及实践经验。

利用结构方程模型建模往往遇到很多'特殊'情况:1)变量间为非直线关系;2)变量间存在交互作用;3)数据不满足正态分布;4)变量为非正态类型的数值变量,如0,1数据(符合二项分布)和计数数据(符合泊松分布)等等;5)外生或内生变量为分类变量,如男女、高中低、不同土地类型或森林类型等。在《基于R语言结构方程模型》中我们对变量非直线关系和非正态变量及数据分析做了介绍,但大家在遇到这些情况时仍然存在很大困惑。这些情况往往需要进行特殊处理,本次课程将针对上述问题进行更深入的讲解,使大家在利用结构方程模型建模遇到上述情况时能够从容面对。

一:非线性关系及交互作用分析

1、外生变量非线性关系处理

2、内生变量非线性关系处理

3、变量间存在交互作用关系分析

二:非正态数据/变量分析

1、数据/变量非正态问题

2、非正态数据分析

3、非正态变量变量分析

三:分类变量分析

1、分类变量介绍

2、外生变量为分类变量分析

3、内生变量为分类变量分析

原文链接https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247686676&idx=6&sn=d1ee4554f1c66390a763df58d3e0c5be&chksm=fa774529cd00cc3f4b6b55ffd19b16184914ca4b2298a37e2ad23eec787ff34c120f40c1e7fb&token=1275762367&lang=zh_CN#rd

相关推荐
生信碱移1 小时前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化
量子-Alex2 小时前
【遥感图像分类】【综述】遥感影像分类:全面综述与应用
人工智能·分类·数据挖掘
qq_436962188 小时前
AI数据分析的利器:解锁BI工具的无限潜力
人工智能·数据挖掘·数据分析·ai数据分析
lilye669 小时前
精益数据分析(24/126):聚焦第一关键指标,驱动创业成功
数据挖掘·数据分析
云天徽上1 天前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
用户199701080181 天前
深入解析淘宝商品详情 API 接口:功能、使用与实践指南
大数据·爬虫·数据挖掘
Tiger Z1 天前
R 语言科研绘图第 41 期 --- 桑基图-基础
开发语言·r语言·贴图
dundunmm1 天前
【每天一个知识点】如何解决大模型幻觉(hallucination)问题?
人工智能·数据挖掘·大模型
lilye661 天前
精益数据分析(18/126):权衡数据运用,精准把握创业方向
数据挖掘·数据分析
云天徽上1 天前
【数据可视化-30】Netflix电影和电视节目数据集可视化分析
人工智能·机器学习·信息可视化·数据挖掘