结构方程模型【SEM】:非线性、非正态、交互作用及分类变量分析

**张老师(研究员),**长期从事R语言结构方程模型、群落生态学、保护生物学、景观生态学和生态模型方面的研究和教学工作,已发表了多篇论文,拥有丰富的科研及实践经验。

利用结构方程模型建模往往遇到很多'特殊'情况:1)变量间为非直线关系;2)变量间存在交互作用;3)数据不满足正态分布;4)变量为非正态类型的数值变量,如0,1数据(符合二项分布)和计数数据(符合泊松分布)等等;5)外生或内生变量为分类变量,如男女、高中低、不同土地类型或森林类型等。在《基于R语言结构方程模型》中我们对变量非直线关系和非正态变量及数据分析做了介绍,但大家在遇到这些情况时仍然存在很大困惑。这些情况往往需要进行特殊处理,本次课程将针对上述问题进行更深入的讲解,使大家在利用结构方程模型建模遇到上述情况时能够从容面对。

一:非线性关系及交互作用分析

1、外生变量非线性关系处理

2、内生变量非线性关系处理

3、变量间存在交互作用关系分析

二:非正态数据/变量分析

1、数据/变量非正态问题

2、非正态数据分析

3、非正态变量变量分析

三:分类变量分析

1、分类变量介绍

2、外生变量为分类变量分析

3、内生变量为分类变量分析

原文链接https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247686676&idx=6&sn=d1ee4554f1c66390a763df58d3e0c5be&chksm=fa774529cd00cc3f4b6b55ffd19b16184914ca4b2298a37e2ad23eec787ff34c120f40c1e7fb&token=1275762367&lang=zh_CN#rd

相关推荐
大鹏的NLP博客1 小时前
基于 Transformer robert的情感分类任务实践总结之二——R-Drop
分类·transformer·r-dop
molunnnn2 小时前
day 18进行聚类,进而推断出每个簇的实际含义
机器学习·数据挖掘·聚类
Humbunklung2 小时前
机器学习算法分类
算法·机器学习·分类
nanzhuhe3 小时前
sql中group by使用场景
数据库·sql·数据挖掘
Chef_Chen8 小时前
从0开始学习R语言--Day20-ARIMA与格兰杰因果检验
开发语言·学习·r语言
山顶听风8 小时前
多层感知器MLP实现非线性分类(原理)
人工智能·分类·数据挖掘
山顶听风8 小时前
MLP实战二:MLP 实现图像数字多分类
人工智能·机器学习·分类
rit843249910 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
火星数据-Tina1 天前
AI数据分析在体育中的应用:技术与实践
人工智能·数据挖掘·数据分析
Jay Kay1 天前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归