设计普遍逼近的深度神经网络:一阶优化方法

论文地址:https://ieeexplore.ieee.org/document/10477580

传统的基于优化的神经网络设计方法通常从一个具有显式表示的目标函数出发,采用特定的优化算法进行求解,再将优化迭代格式映射为神经网络架构,例如著名的 LISTA-NN 就是利用 LISTA 算法求解 LASSO 问题所得 [4],这种方法受限于目标函数的显式表达式,可设计得到的网络结构有限。一些研究者尝试通过自定义目标函数,再利用算法展开等方法设计网络结构,但他们也需要如权重绑定等与实际情况可能不符的假设。

论文提出的易于操作的网络架构设计方法从一阶优化算法的更新格式出发,将梯度或邻近点算法写成如下的更新格式:

再将梯度项替换为神经网络中的可学习模块 T,即可得到 L 层神经网络的骨架。

链接

相关推荐
牙牙要健康34 分钟前
【目标检测】【深度学习】【Pytorch版本】YOLOV2模型算法详解
pytorch·深度学习·目标检测
无难事者若执1 小时前
新手村:逻辑回归-理解03:逻辑回归中的最大似然函数
算法·机器学习·逻辑回归
达柳斯·绍达华·宁1 小时前
自动驾驶04:点云预处理03
人工智能·机器学习·自动驾驶
wgc2k2 小时前
吴恩达深度学习复盘(4)神经网络的前向传播
人工智能·深度学习
屎派克2 小时前
神经网络知识
人工智能·深度学习·神经网络
IT从业者张某某2 小时前
机器学习-04-分类算法-03KNN算法案例
算法·机器学习·分类
补三补四2 小时前
k近邻算法K-Nearest Neighbors(KNN)
人工智能·机器学习
databook3 小时前
线性判别分析(LDA):降维与分类的完美结合
python·机器学习·scikit-learn
硅谷秋水3 小时前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理