设计普遍逼近的深度神经网络:一阶优化方法

论文地址:https://ieeexplore.ieee.org/document/10477580

传统的基于优化的神经网络设计方法通常从一个具有显式表示的目标函数出发,采用特定的优化算法进行求解,再将优化迭代格式映射为神经网络架构,例如著名的 LISTA-NN 就是利用 LISTA 算法求解 LASSO 问题所得 [4],这种方法受限于目标函数的显式表达式,可设计得到的网络结构有限。一些研究者尝试通过自定义目标函数,再利用算法展开等方法设计网络结构,但他们也需要如权重绑定等与实际情况可能不符的假设。

论文提出的易于操作的网络架构设计方法从一阶优化算法的更新格式出发,将梯度或邻近点算法写成如下的更新格式:

再将梯度项替换为神经网络中的可学习模块 T,即可得到 L 层神经网络的骨架。

链接

相关推荐
心疼你的一切2 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
chian-ocean2 小时前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
水月wwww2 小时前
【深度学习】卷积神经网络
人工智能·深度学习·cnn·卷积神经网络
杜子不疼.2 小时前
CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
深度学习·性能优化·transformer
renhongxia13 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
深鱼~3 小时前
ops-transformer算子库:解锁昇腾大模型加速的关键
人工智能·深度学习·transformer·cann
禁默3 小时前
不仅是 FlashAttention:揭秘 CANN ops-transformer 如何重构大模型推理
深度学习·重构·aigc·transformer·cann
笔画人生3 小时前
进阶解读:`ops-transformer` 内部实现与性能调优实战
人工智能·深度学习·transformer
CV@CV3 小时前
2026自动驾驶商业化提速——从智驾平权到Robotaxi规模化落地
人工智能·机器学习·自动驾驶
种时光的人3 小时前
CANN仓库核心解读:ascend-transformer-boost解锁AIGC大模型加速新范式
深度学习·aigc·transformer