设计普遍逼近的深度神经网络:一阶优化方法

论文地址:https://ieeexplore.ieee.org/document/10477580

传统的基于优化的神经网络设计方法通常从一个具有显式表示的目标函数出发,采用特定的优化算法进行求解,再将优化迭代格式映射为神经网络架构,例如著名的 LISTA-NN 就是利用 LISTA 算法求解 LASSO 问题所得 [4],这种方法受限于目标函数的显式表达式,可设计得到的网络结构有限。一些研究者尝试通过自定义目标函数,再利用算法展开等方法设计网络结构,但他们也需要如权重绑定等与实际情况可能不符的假设。

论文提出的易于操作的网络架构设计方法从一阶优化算法的更新格式出发,将梯度或邻近点算法写成如下的更新格式:

再将梯度项替换为神经网络中的可学习模块 T,即可得到 L 层神经网络的骨架。

链接

相关推荐
千宇宙航5 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董5 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco5 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟6 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟8 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
蓝婷儿9 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手9 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
我就是全世界10 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield10 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
强哥之神11 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算