图像处理:乘法滤波器(Multiplying Filter)和逆FFT位移

一、乘法滤波器(Multiplying Filter)

乘法滤波器是一种以像素值为权重的滤波器,它通过将滤波器的权重与图像的像素值相乘,来获得滤波后的像素值。具体地,假设乘法滤波器的权重为h(i,j),图像的像素值为f(m,n),那么滤波后的像素值g(x,y)可以表示为:

g(x,y) = ∑∑ f(m,n)h(x-m,y-n)

∑∑表示对所有的(m,n)进行求和。

平移后的图像是指将图像进行平移操作后的结果。平移操作通常是指将图像的像素沿着x轴和y轴方向进行平移。平移后的图像与原始图像具有相同的大小和分辨率,但它们的像素位置发生了变化。在滤波操作中,平移后的图像可以用于与滤波器进行卷积运算,以实现滤波操作。

此操作抑制高频并保留低频,对于高通滤波器反之亦然。这个乘法过程对于去除不需要的频率和增强所需的频率是必不可少的,从而产生更清晰和更清晰的图像。

它使我们能够获得期望的频率响应,并在频域获得最终滤波图像。

复制代码
 fig, ax = plt.subplots()
 im = ax.imshow(np.log(1+np.abs(fftshifted_image * idealFilterLP(50,img.shape))), cmap='gray')
 ax.set_title('Filtered Image in Frequency Domain')
 ax.set_xticks([])
 ax.set_yticks([])

 fig.savefig('filtered image in freq domain.png', bbox_inches='tight')

在可视化傅里叶频谱时,使用np.log(1+np.abs(x))和20*np.log(np.abs(x))之间的选择是个人喜好的问题,可以取决于具体的应用程序。

一般情况下会使用Np.log (1+np.abs(x)),因为它通过压缩数据的动态范围来帮助更清晰地可视化频谱。这是通过取数据绝对值的对数来实现的,并加上1以避免取零的对数。

而20*np.log(np.abs(x))将数据按20倍缩放,并对数据的绝对值取对数,这可以更容易地看到不同频率之间较小的幅度差异。但是它不会像np.log(1+np.abs(x))那样压缩数据的动态范围。

这两种方法都有各自的优点和缺点,最终取决于具体的应用程序和个人偏好。

二、逆FFT位移

在频域滤波后,我们需要将图像移回原始位置,然后应用逆FFT。为了实现这一点,需要使用逆FFT移位,它反转了前面执行的移位过程。

复制代码
 fig, ax = plt.subplots()
 im = ax.imshow(np.log(1+np.abs(np.fft.ifftshift(fftshifted_image * idealFilterLP(50,img.shape)))), cmap='gray')
 ax.set_title('Filtered Image inverse fft shifted')
 ax.set_xticks([])
 ax.set_yticks([])

 fig.savefig('filtered image inverse fft shifted.png', bbox_inches='tight')
相关推荐
岁月蹉跎的一杯酒23 分钟前
Clion opencv C++无法直接读取本地图像
c++·人工智能·opencv
IT·小灰灰27 分钟前
AI成为精确的执行导演:Runway Gen-4.5如何用控制美学重塑社媒视频工业
大数据·图像处理·人工智能·python·数据分析·音视频
劈星斩月29 分钟前
OpenCV 学习7-图像标注
opencv·图像标注
AI视觉网奇33 分钟前
roi生成 二值图
人工智能·opencv·计算机视觉
音视频牛哥34 分钟前
具身智能时代的音视频架构重构:从延迟到多模态的技术挑战
人工智能·计算机视觉·音视频·具身智能·具身智能低延迟方案·智能机器人rtsp rtmp·rtsp、rtmp低延迟播放器
南极星100536 分钟前
OPENCV(python)--初学之路(十七)二进制鲁棒独立(BRIEF)和定向快速和轮换(ORB)
人工智能·python·opencv
sali-tec9 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗9 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
F_D_Z11 小时前
简明 | Yolo-v3结构理解摘要
深度学习·神经网络·yolo·计算机视觉·resnet
AI视觉网奇12 小时前
图像分层 Layer Diffusion 笔记
计算机视觉