图像处理:乘法滤波器(Multiplying Filter)和逆FFT位移

一、乘法滤波器(Multiplying Filter)

乘法滤波器是一种以像素值为权重的滤波器,它通过将滤波器的权重与图像的像素值相乘,来获得滤波后的像素值。具体地,假设乘法滤波器的权重为h(i,j),图像的像素值为f(m,n),那么滤波后的像素值g(x,y)可以表示为:

g(x,y) = ∑∑ f(m,n)h(x-m,y-n)

∑∑表示对所有的(m,n)进行求和。

平移后的图像是指将图像进行平移操作后的结果。平移操作通常是指将图像的像素沿着x轴和y轴方向进行平移。平移后的图像与原始图像具有相同的大小和分辨率,但它们的像素位置发生了变化。在滤波操作中,平移后的图像可以用于与滤波器进行卷积运算,以实现滤波操作。

此操作抑制高频并保留低频,对于高通滤波器反之亦然。这个乘法过程对于去除不需要的频率和增强所需的频率是必不可少的,从而产生更清晰和更清晰的图像。

它使我们能够获得期望的频率响应,并在频域获得最终滤波图像。

复制代码
 fig, ax = plt.subplots()
 im = ax.imshow(np.log(1+np.abs(fftshifted_image * idealFilterLP(50,img.shape))), cmap='gray')
 ax.set_title('Filtered Image in Frequency Domain')
 ax.set_xticks([])
 ax.set_yticks([])

 fig.savefig('filtered image in freq domain.png', bbox_inches='tight')

在可视化傅里叶频谱时,使用np.log(1+np.abs(x))和20*np.log(np.abs(x))之间的选择是个人喜好的问题,可以取决于具体的应用程序。

一般情况下会使用Np.log (1+np.abs(x)),因为它通过压缩数据的动态范围来帮助更清晰地可视化频谱。这是通过取数据绝对值的对数来实现的,并加上1以避免取零的对数。

而20*np.log(np.abs(x))将数据按20倍缩放,并对数据的绝对值取对数,这可以更容易地看到不同频率之间较小的幅度差异。但是它不会像np.log(1+np.abs(x))那样压缩数据的动态范围。

这两种方法都有各自的优点和缺点,最终取决于具体的应用程序和个人偏好。

二、逆FFT位移

在频域滤波后,我们需要将图像移回原始位置,然后应用逆FFT。为了实现这一点,需要使用逆FFT移位,它反转了前面执行的移位过程。

复制代码
 fig, ax = plt.subplots()
 im = ax.imshow(np.log(1+np.abs(np.fft.ifftshift(fftshifted_image * idealFilterLP(50,img.shape)))), cmap='gray')
 ax.set_title('Filtered Image inverse fft shifted')
 ax.set_xticks([])
 ax.set_yticks([])

 fig.savefig('filtered image inverse fft shifted.png', bbox_inches='tight')
相关推荐
湫兮之风6 分钟前
OpenCV: Mat存储方式全解析-单通道、多通道内存布局详解
人工智能·opencv·计算机视觉
点云侠2 小时前
解决Visual Studio 2022编译工程速度慢的问题
开发语言·c++·ide·算法·计算机视觉·visual studio
爆改模型3 小时前
【ICCV2025】计算机视觉|即插即用|ESC:超越Transformer!即插即用ESC模块,显著提升图像超分辨率性能!
人工智能·计算机视觉·transformer
却道天凉_好个秋4 小时前
计算机视觉(十二):人工智能、机器学习与深度学习
人工智能·深度学习·机器学习·计算机视觉
豆浩宇5 小时前
Conda环境隔离和PyCharm配置,完美同时运行PaddlePaddle和PyTorch
人工智能·pytorch·算法·计算机视觉·pycharm·conda·paddlepaddle
北岛三生5 小时前
Camera tuning flow相机调试流程
图像处理·数码相机·测试工具·模块测试
AI人工智能+6 小时前
表格识别技术:通过计算机视觉和OCR,实现非结构化表格向结构化数据的转换,推动数字化转型。
人工智能·计算机视觉·ocr
算法打盹中6 小时前
SimLingo:纯视觉框架下的自动驾驶视觉 - 语言 - 动作融合模型
人工智能·机器学习·计算机视觉·语言模型·自动驾驶
大嘴带你水论文7 小时前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer
格林威7 小时前
棱镜的技术加持:线扫相机如何同时拍RGB和SWIR?
人工智能·深度学习·数码相机·yolo·计算机视觉