.requires_grad,.detach(),torch.no_grad()

让模型参数的requires_grad=False:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim


def check_tensor_properties(tensor, name):
    print(f"Tensor name: {name}")
    print("Requires gradient:", tensor.requires_grad)
    print("Is leaf:", tensor.is_leaf)
    print('\n')


class SelectiveGradientModel(nn.Module):
    def __init__(self):
        super(SelectiveGradientModel, self).__init__()
        self.layer1 = nn.Linear(2, 2)
        self.layer2 = nn.Linear(2, 2)
        # let the parameters of layer2 not require gradients
        for param in self.layer2.parameters():
            param.requires_grad = False
        self.layer3 = nn.Linear(2, 2)

    def forward(self, x):
        check_tensor_properties(x, "x")  # requires_grad=False, is_leaf=True. just because it's the input tensor

        x_ = torch.relu(self.layer1(x))
        check_tensor_properties(x_, "x_")  # requires_grad=True, is_leaf=False

        y = torch.relu(self.layer2(x_))  # layer2's parameters do not require gradients
        check_tensor_properties(y, "y")  # requires_grad=True, is_leaf=False

        t = self.layer3(y)
        check_tensor_properties(t, "t")  # requires_grad=True, is_leaf=False

        return t


torch.manual_seed(2)
model = SelectiveGradientModel()

optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)
criterion = nn.MSELoss()

inputs = torch.randn(1, 2)
check_tensor_properties(inputs, "inputs")  # requires_grad=False, is_leaf=True

targets = torch.randn(1, 2)

outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

print("Layer1 gradients:")
for param in model.layer1.parameters():
    print(param.grad)  # not None

print("Layer2 gradients:")
for param in model.layer2.parameters():
    print(param.grad)  # None

print("Layer3 gradients:")
for param in model.layer3.parameters():
    print(param.grad)  # not None

detach:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim


def check_tensor_properties(tensor, name):
    print(f"Tensor name: {name}")
    print("Requires gradient:", tensor.requires_grad)
    print("Is leaf:", tensor.is_leaf)
    print('\n')

class SelectiveGradientModel(nn.Module):
    def __init__(self):
        super(SelectiveGradientModel, self).__init__()
        self.layer1 = nn.Linear(2, 2)
        self.layer2 = nn.Linear(2, 2)
        self.layer3 = nn.Linear(2, 2)

    def forward(self, x):
        x = torch.relu(self.layer1(x))

        x = torch.relu(self.layer2(x))
        check_tensor_properties(x, "x")  # requires_grad=True, is_leaf=False

        z = x.detach()  # detach x from the computation graph
        check_tensor_properties(z, "z")  # requires_grad=False, is_leaf=True
        
        t = self.layer3(z)
        check_tensor_properties(t, "t")  # requires_grad=True, is_leaf=False

        return t


torch.manual_seed(2)
model = SelectiveGradientModel()

optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)
criterion = nn.MSELoss()

inputs = torch.randn(1, 2)
targets = torch.randn(1, 2)

outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

print("Layer1 gradients:")
for param in model.layer1.parameters():
    print(param.grad)  # None

print("Layer2 gradients:")
for param in model.layer2.parameters():
    print(param.grad)  # None

print("Layer3 gradients:")
for param in model.layer3.parameters():
    print(param.grad)  # not None

torch.no_grad():

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim


def check_tensor_properties(tensor, name):
    print(f"Tensor name: {name}")
    print("Requires gradient:", tensor.requires_grad)
    print("Is leaf:", tensor.is_leaf)
    print('\n')


class SelectiveGradientModel(nn.Module):
    def __init__(self):
        super(SelectiveGradientModel, self).__init__()
        self.layer1 = nn.Linear(2, 2)
        self.layer20 = nn.Linear(2, 2)
        self.layer21 = nn.Linear(2, 2)
        self.layer3 = nn.Linear(2, 2)

    def forward(self, x):
        x = torch.relu(self.layer1(x))
        check_tensor_properties(x, "x")  # requires_grad=True, is_leaf=False

        with torch.no_grad():  # all the tensors created in this block will not require gradients and be leaf tensors
            y = torch.relu(self.layer20(x))
            check_tensor_properties(y, "y")  # requires_grad=False, is_leaf=True

            z = torch.relu(self.layer21(y))
            check_tensor_properties(z, "z")  # requires_grad=False, is_leaf=True

        t = self.layer3(z)
        check_tensor_properties(t, "t")  # requires_grad=True, is_leaf=False

        return t


torch.manual_seed(2)
model = SelectiveGradientModel()

optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.MSELoss()

inputs = torch.randn(1, 2)
targets = torch.randn(1, 2)

outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

print("Layer1 gradients:")
for param in model.layer1.parameters():
    print(param.grad)  # None

print("Layer20 gradients:")
for param in model.layer20.parameters():
    print(param.grad)  # None

print("Layer21 gradients:")
for param in model.layer21.parameters():
    print(param.grad)  # None

print("Layer3 gradients:")
for param in model.layer3.parameters():
    print(param.grad)  # not None
相关推荐
zzz海羊3 分钟前
【CS336】Transformer|2-BPE算法 -> Tokenizer封装
深度学习·算法·语言模型·transformer
Yeats_Liao4 分钟前
显存瓶颈分析:大模型推理过程中的内存管理机制
python·深度学习·神经网络·架构·开源
齐鲁大虾7 分钟前
如何通过Java调取打印机打印图片和文本
java·开发语言·python
carver w8 分钟前
张氏相机标定,不求甚解使用篇
c++·python·数码相机
No0d1es9 分钟前
2025年第十六届蓝桥杯青少组省赛 Python编程 初/中级组真题
python·蓝桥杯·第十六届·省事
junziruruo10 分钟前
损失函数(以FMTrack频率感知交互与多专家模型的损失为例)
图像处理·深度学习·学习·计算机视觉
li星野19 分钟前
OpenCV4X学习-图像边缘检测、图像分割
深度学习·学习·计算机视觉
Loacnasfhia927 分钟前
【深度学习】基于RPN_R101_FPN_2x_COCO模型的保险丝旋塞检测与识别_1
人工智能·深度学习
程序猿阿伟28 分钟前
《从理论到应用:量子神经网络表达能力的全链路优化指南》
人工智能·深度学习·神经网络
蜜汁小强30 分钟前
macOS 上升级到 python 3.12
开发语言·python·macos