.requires_grad,.detach(),torch.no_grad()

让模型参数的requires_grad=False:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim


def check_tensor_properties(tensor, name):
    print(f"Tensor name: {name}")
    print("Requires gradient:", tensor.requires_grad)
    print("Is leaf:", tensor.is_leaf)
    print('\n')


class SelectiveGradientModel(nn.Module):
    def __init__(self):
        super(SelectiveGradientModel, self).__init__()
        self.layer1 = nn.Linear(2, 2)
        self.layer2 = nn.Linear(2, 2)
        # let the parameters of layer2 not require gradients
        for param in self.layer2.parameters():
            param.requires_grad = False
        self.layer3 = nn.Linear(2, 2)

    def forward(self, x):
        check_tensor_properties(x, "x")  # requires_grad=False, is_leaf=True. just because it's the input tensor

        x_ = torch.relu(self.layer1(x))
        check_tensor_properties(x_, "x_")  # requires_grad=True, is_leaf=False

        y = torch.relu(self.layer2(x_))  # layer2's parameters do not require gradients
        check_tensor_properties(y, "y")  # requires_grad=True, is_leaf=False

        t = self.layer3(y)
        check_tensor_properties(t, "t")  # requires_grad=True, is_leaf=False

        return t


torch.manual_seed(2)
model = SelectiveGradientModel()

optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)
criterion = nn.MSELoss()

inputs = torch.randn(1, 2)
check_tensor_properties(inputs, "inputs")  # requires_grad=False, is_leaf=True

targets = torch.randn(1, 2)

outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

print("Layer1 gradients:")
for param in model.layer1.parameters():
    print(param.grad)  # not None

print("Layer2 gradients:")
for param in model.layer2.parameters():
    print(param.grad)  # None

print("Layer3 gradients:")
for param in model.layer3.parameters():
    print(param.grad)  # not None

detach:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim


def check_tensor_properties(tensor, name):
    print(f"Tensor name: {name}")
    print("Requires gradient:", tensor.requires_grad)
    print("Is leaf:", tensor.is_leaf)
    print('\n')

class SelectiveGradientModel(nn.Module):
    def __init__(self):
        super(SelectiveGradientModel, self).__init__()
        self.layer1 = nn.Linear(2, 2)
        self.layer2 = nn.Linear(2, 2)
        self.layer3 = nn.Linear(2, 2)

    def forward(self, x):
        x = torch.relu(self.layer1(x))

        x = torch.relu(self.layer2(x))
        check_tensor_properties(x, "x")  # requires_grad=True, is_leaf=False

        z = x.detach()  # detach x from the computation graph
        check_tensor_properties(z, "z")  # requires_grad=False, is_leaf=True
        
        t = self.layer3(z)
        check_tensor_properties(t, "t")  # requires_grad=True, is_leaf=False

        return t


torch.manual_seed(2)
model = SelectiveGradientModel()

optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)
criterion = nn.MSELoss()

inputs = torch.randn(1, 2)
targets = torch.randn(1, 2)

outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

print("Layer1 gradients:")
for param in model.layer1.parameters():
    print(param.grad)  # None

print("Layer2 gradients:")
for param in model.layer2.parameters():
    print(param.grad)  # None

print("Layer3 gradients:")
for param in model.layer3.parameters():
    print(param.grad)  # not None

torch.no_grad():

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim


def check_tensor_properties(tensor, name):
    print(f"Tensor name: {name}")
    print("Requires gradient:", tensor.requires_grad)
    print("Is leaf:", tensor.is_leaf)
    print('\n')


class SelectiveGradientModel(nn.Module):
    def __init__(self):
        super(SelectiveGradientModel, self).__init__()
        self.layer1 = nn.Linear(2, 2)
        self.layer20 = nn.Linear(2, 2)
        self.layer21 = nn.Linear(2, 2)
        self.layer3 = nn.Linear(2, 2)

    def forward(self, x):
        x = torch.relu(self.layer1(x))
        check_tensor_properties(x, "x")  # requires_grad=True, is_leaf=False

        with torch.no_grad():  # all the tensors created in this block will not require gradients and be leaf tensors
            y = torch.relu(self.layer20(x))
            check_tensor_properties(y, "y")  # requires_grad=False, is_leaf=True

            z = torch.relu(self.layer21(y))
            check_tensor_properties(z, "z")  # requires_grad=False, is_leaf=True

        t = self.layer3(z)
        check_tensor_properties(t, "t")  # requires_grad=True, is_leaf=False

        return t


torch.manual_seed(2)
model = SelectiveGradientModel()

optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.MSELoss()

inputs = torch.randn(1, 2)
targets = torch.randn(1, 2)

outputs = model(inputs)
loss = criterion(outputs, targets)

loss.backward()

print("Layer1 gradients:")
for param in model.layer1.parameters():
    print(param.grad)  # None

print("Layer20 gradients:")
for param in model.layer20.parameters():
    print(param.grad)  # None

print("Layer21 gradients:")
for param in model.layer21.parameters():
    print(param.grad)  # None

print("Layer3 gradients:")
for param in model.layer3.parameters():
    print(param.grad)  # not None
相关推荐
老胖闲聊3 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之4 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
lyaihao5 小时前
使用python实现奔跑的线条效果
python·绘图
ai大师5 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
小小爬虾5 小时前
关于datetime获取时间的问题
python
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉