【无标题】

为了预测结果表中的congested个数,通常我们需要基于历史数据或某种模型来进行预测。但SQL本身并不直接支持复杂的预测算法(如机器学习模型)。不过,如果我们有历史拥堵数据,并希望基于这些数据进行某种简单的预测(例如,使用平均拥堵次数),那么我们可以用SQL来完成这个任务。

假设我们有一个历史拥堵记录表congestion_history,它包含以下字段:

road_id (路段ID)

timestamp (时间戳)

is_congested (拥堵标记,例如,1表示拥堵,0表示不拥堵)

而我们的预测目标是要知道未来某个时间段(例如,下一天)每个路段可能的拥堵次数。由于SQL不直接支持复杂的预测,我们可以计算每个路段的平均拥堵次数作为预测值。

以下是一个SQL查询示例,它计算每个路段的平均拥堵次数,并假设这个平均值可以作为未来拥堵次数的预测值:

sql 复制代码
SELECT   
    road_id,  
    COUNT(*) AS total_observations, -- 总观测次数  
    SUM(is_congested) AS total_congested, -- 总拥堵次数  
    AVG(is_congested) AS avg_congested_per_observation, -- 平均每次观测的拥堵概率(注意:这里假设is_congested是0或1)  
    ROUND(AVG(is_congested) * <expected_observations_for_future_period>) AS predicted_congested_count -- 预测的拥堵次数,基于平均拥堵概率和预期的未来观测次数  
FROM   
    congestion_history  
GROUP BY   
    road_id;
注意:

<expected_observations_for_future_period>是一个占位符,你需要替换为你对未来时间段内预期的观测次数。例如,如果你假设每天有100个观测值,那么你就应该用100替换这个占位符。

这个预测是非常简单的,并且可能不准确。对于更复杂的预测,你可能需要使用机器学习模型或其他统计方法,并在模型预测之后将结果导入数据库或直接从应用程序中调用。

这里的AVG(is_congested)实际上计算的是拥堵的概率(如果is_congested是0或1的话),而不是直接的拥堵次数。要得到预测的拥堵次数,我们需要将这个概率乘以预期的未来观测次数。

相关推荐
万粉变现经纪人14 分钟前
如何解决 pip install 编译报错 ‘cl.exe’ not found(缺少 VS C++ 工具集)问题
开发语言·c++·人工智能·python·pycharm·bug·pip
r***113319 分钟前
【玩转全栈】----Django模板语法、请求与响应
数据库·python·django
___波子 Pro Max.1 小时前
Python类型注解详解与应用
python
1***Q7841 小时前
Python增强现实案例
开发语言·python·ar
Q26433650231 小时前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
倚肆2 小时前
Spring Boot 中的 Bean 与自动装配详解
spring boot·后端·python
不剪发的Tony老师2 小时前
PyScripter:一款免费开源、功能强大的Python开发工具
ide·python
FL171713147 小时前
Pytorch保存pt和pkl
人工智能·pytorch·python
爱学习的小道长9 小时前
进程、线程、协程三者的区别和联系
python·ubuntu
L-李俊漩10 小时前
MMN-MnnLlmChat 启动顺序解析
开发语言·python·mnn