【Transformer系列(2)】Multi-head self-attention 多头自注意力

一、多头自注意力

多头自注意力机制与自注意力机制的区别在于,Q,K,V向量被分为了num_heads份。

实现流程

(1)根据num_heads参数将单头变成多头,获取多头注意力中的各个头的Q,K,V值

(2)Q叉乘K的转置,再使用softmax,获取attention

(3)attention叉乘V,得到输出

二、代码实现

(1)根据num_heads参数将单头变成多头,获取多头注意力中的各个头的Q,K,V值

cpp 复制代码
# 每个token(Q,K,V)的尺寸
values_length = 33
# 原始单头长度
hidden_size = 768
# 单头qkv
# [33,768]
Query = np.random.rand(values_length, hidden_size)
Key = np.random.rand(values_length, hidden_size)
Value = np.random.rand(values_length, hidden_size)

# 单头 -> 分组为8个头
# [33,768] -> [33,8,96]
# 8个头
num_attention_heads = 8
# 原始单头拆分为多头后,我们单头的长度
attention_head_size = hidden_size // num_attention_heads
Query = np.reshape(Query, [values_length, num_attention_heads, attention_head_size])
Key = np.reshape(Key, [values_length, num_attention_heads, attention_head_size])
Value = np.reshape(Value, [values_length, num_attention_heads, attention_head_size])

# [33,8,96] -> [8,33,96] 头放最前面 M,H*W,C
Query = np.transpose(Query, [1, 0, 2])
Key = np.transpose(Key, [1, 0, 2])
Value = np.transpose(Value, [1, 0, 2])

(2)Q叉乘K的转置,再使用softmax,获取attention

cpp 复制代码
# qv -> attention
# [8,33,96] @ [8,96,33] -> [8,33,33] [m1,n] @ [n,m2] -> [m1,m2]
scores = Query @ np.transpose(Key, [0, 2, 1])
print(np.shape(scores))
# qv+softmax -> attention
scores = soft_max(scores)
print(np.shape(scores))

(3)attention叉乘V,得到输出

cpp 复制代码
# attention+v -> output
# [8,33,33] @ [8,33,96] -> [8,33,96] [m1,n] @ [n,m2] -> [m1,m2]
out = scores @ Value
print(np.shape(out))
# [8,33,96] -> [33,8,96]
out = np.transpose(out, [1, 0, 2])
print(np.shape(out))
# [33,8,96] -> [33,768]
out = np.reshape(out, [values_length , 768])
print(np.shape(out))

三、完整代码

cpp 复制代码
# multi-head self-attention #
# by liushuai #
# 2024/2/6 #

import numpy as np

def soft_max(z):
    t = np.exp(z)
    a = np.exp(z) / np.expand_dims(np.sum(t, axis=-1), -1)
    return a

# 每个token(Q,K,V)的尺寸
# 相当于H*W
values_length = 33
# 原始单头深度
# 相当于Channels
hidden_size = 768
# 单头qkv
# [33,768]
Query = np.random.rand(values_length, hidden_size)
Key = np.random.rand(values_length, hidden_size)
Value = np.random.rand(values_length, hidden_size)

# 单头 -> 分组为8个头
# [33,768] -> [33,8,96]
# 8个头
num_attention_heads = 8
# 原始单头拆分为多头后,我们单头的深度
attention_head_size = hidden_size // num_attention_heads
Query = np.reshape(Query, [values_length, num_attention_heads, attention_head_size])
Key = np.reshape(Key, [values_length, num_attention_heads, attention_head_size])
Value = np.reshape(Value, [values_length, num_attention_heads, attention_head_size])

# [33,8,96] -> [8,33,96] 头放最前面 M,H*W,C
Query = np.transpose(Query, [1, 0, 2])
Key = np.transpose(Key, [1, 0, 2])
Value = np.transpose(Value, [1, 0, 2])

# qv -> attention
# [8,33,96] @ [8,96,33] -> [8,33,33] [m1,n] @ [n,m2] -> [m1,m2]
scores = Query @ np.transpose(Key, [0, 2, 1])
print(np.shape(scores))
# qv+softmax -> attention
scores = soft_max(scores)
print(np.shape(scores))

# attention+v -> output
# [8,33,33] @ [8,33,96] -> [8,33,96] [m1,n] @ [n,m2] -> [m1,m2]
out = scores @ Value
print(np.shape(out))
# [8,33,96] -> [33,8,96]
out = np.transpose(out, [1, 0, 2])
print(np.shape(out))
# [33,8,96] -> [33,768]
out = np.reshape(out, [values_length , 768])
print(np.shape(out))
相关推荐
kngines11 分钟前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_0714 分钟前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全20 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王26 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天35 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.01 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉03071 小时前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
荔枝吻2 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901062 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
云卓SKYDROID2 小时前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技