Java 中有多种排序算法,包括冒泡排序、选择排序、插入排序、归并排序、快速排序、堆排序等。这些算法在复杂度、稳定性和适用性上有所不同。以下是一些基本排序算法的 Java 实现:
1、冒泡排序 (Bubble Sort)
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
java
public static void bubbleSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// swap arr[j+1] and arr[j]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
2、选择排序 (Selection Sort)
选择排序是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
java
public static void selectionSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
int min_idx = i;
for (int j = i + 1; j < n; j++) {
if (arr[j] < arr[min_idx]) {
min_idx = j;
}
}
// Swap the found minimum element with the first element
int temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
}
3、插入排序 (Insertion Sort)
插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
java
public static void insertionSort(int[] arr) {
int n = arr.length;
for (int i = 1; i < n; ++i) {
int key = arr[i];
int j = i - 1;
/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
4、归并排序(Merge Sort)
归并排序是一种分治思想的排序算法。它将待排序的数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并成一个有序的数组。
java
public class MergeSort {
public static void mergeSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
mergeSort(arr, 0, arr.length - 1);
}
private static void mergeSort(int[] arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
}
private static void merge(int[] arr, int left, int mid, int right) {
int[] temp = new int[right - left + 1];
int i = left, j = mid + 1, k = 0;
while (i <= mid && j <= right) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
} else {
temp[k++] = arr[j++];
}
}
while (i <= mid) {
temp[k++] = arr[i++];
}
while (j <= right) {
temp[k++] = arr[j++];
}
for (i = 0; i < temp.length; i++) {
arr[left + i] = temp[i];
}
}
}
5、快速排序(Quick Sort)
快速排序也是一种分治思想的排序算法。它选择一个基准元素,将数组中小于基准的元素移到基准的左边,大于基准的元素移到基准的右边,然后分别对左右两个子数组进行递归排序。
java
public class QuickSort {
public static void quickSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
quickSort(arr, 0, arr.length - 1);
}
private static void quickSort(int[] arr, int left, int right) {
if (left < right) {
int pivotIndex = partition(arr, left, right);
quickSort(arr, left, pivotIndex - 1);
quickSort(arr, pivotIndex + 1, right);
}
}
private static int partition(int[] arr, int left, int right) {
int pivot = arr[right];
int i = left - 1;
for (int j = left; j < right; j++) {
if (arr[j] <= pivot) {
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, right);
return i + 1;
}
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
6、堆排序(Heap Sort)
堆排序是利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。堆排序可以分为两个主要的过程:建堆和堆调整。
java
public class HeapSort {
void sort(int arr[]) {
int n = arr.length;
// Build heap (rearrange array)
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for (int i=n-1; i>=0; i--) {
// Move current root to end
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
// call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
// To heapify a subtree rooted with node i which is an index in arr[]. n is size of heap
void heapify(int arr[], int n, int i) {
int largest = i; // Initialize largest as root
int left = 2*i + 1; // left = 2*i + 1
int right = 2*i + 2; // right = 2*i + 2
// If left child is larger than root
if (left < n && arr[left] > arr[largest])
largest = left;
// If right child is larger than largest so far
if (right < n && arr[right] > arr[largest])
largest = right;
// If largest is not root
if (largest != i) {
int swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
// A utility function to print array of size n
static void printArray(int arr[]) {
int n = arr.length;
for (int i=0; i<n; ++i)
System.out.print(arr[i]+" ");
System.out.println();
}
// Test the code
public static void main(String args[]) {
int arr[] = {12, 11, 13, 5, 6, 7};
int n = arr.length;
HeapSort hs = new HeapSort();
hs.sort(arr);
System.out.println("Sorted array is");
printArray(arr);
}
}