PyTorch中Torch.arange()函数详解

函数原型

arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

用法

返回大小为一维张量 ,其值介于区间 为步长等间隔取值

参数说明

参数 类型 说明
start Number 起始值,默认值:0
end Number 结束值
step Number 步长,默认值:1

关键字参数

关键字参数 类型 说明
out Tensor 输出张量
dtype torch.dtype 期望的返回张量的数据类型。默认值:如果是None,则使用全局默认值。如果未给出 dtype,则从其他输入参数推断数据类型。如果 start、end 或 stop 中的任何一个是浮点数,则 dtype被推断为默认值,参见 get_default_dtype()。否则,dtype 被推断为 torch.int64
layout torch.layout 返回张量的期望 layout。默认值:torch.strided
device torch.device 返回张量的期望设备。默认值:如果是None,则使用当前设备作为默认张量类型,参见torch.set_default_tensor_type()。对于 CPU 类型的张量,则 device 是 CPU ,若是 CUDA 类型的张量,则 device 是当前的 CUDA 设备
requires_grad bool autograd 是否记录返回张量上所作的操作。默认值:False

代码示例

python 复制代码
>>> torch.arange(5)  # 默认以 0 为起点
tensor([ 0,  1,  2,  3,  4])
>>> torch.arange(1, 4)  # 默认间隔为 1
tensor([ 1,  2,  3])
>>> torch.arange(1, 2.5, 0.5)  # 指定间隔 0.5
tensor([ 1.0000,  1.5000,  2.0000])

pyTorch中torch.range()和torch.arange()的区别

python 复制代码
x = torch.range(-8, 8)
y = torch.arange(-8, 8)
print(x, x.dtype)
print(y, y.dtype)

输出

tensor([-8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.,6., 7., 8.]) torch.float32

tensor([-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]) torch.int64

可以看到,torch.range()的范围是[-8, 8],类型为torch.float32

torch.arange()的范围是[-8, 8),类型为torch.int64

在梯度设置时会出现错误:

python 复制代码
x = torch.range(-8, 8, 1, requires_grad=True)
y = torch.arange(-8, 8, 1, requires_grad=True)
print(x, x.dtype)
print(y, y.dtype)

即只有当类型为float时才可设置requires_grad=True,故可将

y ``= torch.arange(``-``8``, ``8``, ``1``, requires_grad``=``True``)

改为以下,即手动改变数据类型即可。

y ``= torch.arange(``-``8.0``, ``8.0``, ``1.0``, requires_grad``=``True``)

输出

tensor([-8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.,6., 7., 8.], requires_grad=True)

torch.float32

tensor([-8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.,6., 7.], requires_grad=True)

torch.float32

相关推荐
余衫马3 分钟前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
pingao1413784 分钟前
冰雪环境无忧测:冬季加热激光雪深监测站保障道路安全与气象研究
人工智能·安全
你才是向阳花7 分钟前
如何用Python实现飞机大战小游戏
开发语言·python·pygame
AndrewHZ11 分钟前
【图像处理基石】提升图像通透感:从原理到实操的完整指南
图像处理·人工智能·计算机视觉·cv·对比度·动态范围·通透感
草莓熊Lotso20 分钟前
C++ 方向 Web 自动化测试实战:以博客系统为例,从用例到报告全流程解析
前端·网络·c++·人工智能·后端·python·功能测试
劲墨难解苍生苦41 分钟前
spring ai alibaba mcp 开发demo
java·人工智能
程序员爱钓鱼1 小时前
Python编程实战——Python实用工具与库:Pandas数据处理
后端·python·ipython
程序员爱钓鱼1 小时前
Python编程实战——Python实用工具与库:Numpy基础
后端·python·面试
程序员霸哥哥1 小时前
从零搭建PyTorch计算机视觉模型
人工智能·pytorch·python·计算机视觉
草莓熊Lotso1 小时前
Linux 基础开发工具入门:软件包管理器的全方位实操指南
linux·运维·服务器·c++·人工智能·网络协议·rpc