机器学习-什么是 PCA?

一、PCA是什么?

PCA 即主成分分析(Principal Component Analysis)哦!它是一种统计分析方法,主要用于掌握事物的主要矛盾。PCA能从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂问题。它工作的原理是通过投影的方式,将高维数据映射到低维的空间中,并尽量保证投影后的数据保留了原始数据的主要特性。

二、如何确定保留几个主成分?

确定PCA保留几个主成分的方法主要依赖于实际的应用场景和需求。一般来说,你可以根据数据的特征、模型的复杂度、以及计算资源的限制来决定。在sklearn的PCA实现中,你可以通过n_components参数来设定要保留的主成分个数。例如,如果你希望将原始数据降到一维,可以设定n_components=1。另外,你还可以设定n_components='mle',这样PCA会自动选取特征个数,使得满足所要求的方差百分比。

三、PCA一般在什么场景下使用?

PCA通常用于处理高维数据集,特别是在数据预处理、数据压缩和特征提取等多个领域。例如,图像处理、基因数据分析和金融数据分析等领域都广泛应用了PCA。通过降低数据的维度,PCA不仅可以帮助我们简化模型,还能提高算法的运行效率,减少过拟合的风险。

四、LDA(Linear Discriminant Analysis) 和PCA的差异?

LDA(Linear Discriminant Analysis,线性判别分析)和PCA在多个方面存在明显的差异。首先,它们的出发点不同。

PCA主要是从特征的协方差角度,寻找数据投影后具有最大方差的方向;

而LDA则更多地考虑了分类标签信息,寻求投影后不同类别之间数据点距离最大化以及同一类别数据点距离最小化。

其次,它们的学习模式也不同。

PCA属于无监督式学习,通常作为数据处理过程的一部分,需要与其他算法结合使用;

而LDA是一种监督式学习方法,既可以用于降维,也可以进行预测应用,既可以组合其他模型一起使用,也可以独立使用。

最后,它们在降维后可用的维度数量上也存在不同。LDA降维后最多可生成C-1维子空间(分类标签数-1),与原始维度数量无关;

而PCA最多有n维度可用,即可以选择全部可用维度。

相关推荐
sensen_kiss15 分钟前
INT303 Big Data Analysis 大数据分析 Pt.11 模型选择和词向量(Word Embeddings)
大数据·数据挖掘·数据分析
laocooon52385788616 分钟前
数据收集, 数据清洗,数据分析,然后可视化,都涉及哪些知识
数据挖掘·数据分析
企业智能研究1 小时前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
2501_941878742 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
byzh_rc3 小时前
[机器学习-从入门到入土] 拓展-最小二乘法
人工智能·机器学习·最小二乘法
高洁013 小时前
10分钟了解向量数据库(3
人工智能·深度学习·机器学习·transformer·知识图谱
tongxianchao4 小时前
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
算法·机器学习·剪枝
2301_800256114 小时前
【数据库pgsql】车辆轨迹分析视图的创建和查询代码解析
人工智能·算法·机器学习
逻极4 小时前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
醉卧考场君莫笑5 小时前
数据分析常用方法:上
数据挖掘·数据分析