轴承故障检测(分类任务)+傅里叶变化+CNN+matlab

1 介绍

使用西储大学的轴承数据集,其实用哪个都行,可能最后的精度会不一样,先读取数据,然后使用傅里叶转换为图像,然后搭建cnn模型,将图像大小转换为模型使用的大小,例如resnet50,输入大小就是224*224。同样提供python版本。

2 数据处理

总共10个类别

对每个数据进行采样,设置2000个样本,每个样本取连续的300个点

matlab 复制代码
% 采样,每个数据采集N条样本,每条样本M长度
M = 2000;
N = 300;
image_index = 1;
sample_all_data = zeros(3, N, M);
for i = 1:10
    sample_class_data = zeros(N, M);
    data = all_data{i};
    % 数据采样
    random_sequence = randperm(length(data) - M);
    selected_numbers = random_sequence(1:N);

    % 对于每个采样的数据,使用fft变换
    for j = 1:N
        start_index = selected_numbers(j);
        sample_data = data(start_index: start_index+M-1);
        sample_class_data(j,:) = sample_data;
        file_path = "images\" +num2str(i) +"\"+ num2str(image_index)+".jpg";
        % 进行fft变换
        process_data(sample_data, file_path)
        image_index = image_index + 1;
    end
    sample_all_data(i,:,:) = sample_class_data;
end

3 fft变换

使用matlab中的变换,转换为频谱图,然后保存,结果如下所示

matlab 复制代码
[S, f, t] = spectrogram(sample_data);

4 cnn模型

搭建一个普通的模型就行,因为这个数据集识别准确率特别高,最后都能到100%

matlab 复制代码
% 设置图像文件夹路径
data_folder = 'images';

% 创建图像数据存储器
imds = imageDatastore(data_folder, ...
    'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[train_imds, test_imds] = splitEachLabel(imds, 0.7, 'randomized');


% 构建 CNN 模型
layers = [
    imageInputLayer([224 224 3])
    convolution2dLayer(3, 16, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 32, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 64, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
];
详情加Q 596520206 同样提供python版本
相关推荐
Hcoco_me35 分钟前
目标追踪概述、分类
人工智能·深度学习·算法·机器学习·分类·数据挖掘·自动驾驶
3GPP仿真实验室41 分钟前
【Matlab源码】6G候选波形:MIMO-OFDM-IM 增强仿真平台
开发语言·网络·matlab
Coisinilove42 分钟前
MATLAB学习笔记——第一章
笔记·学习·matlab
Lun3866buzha2 小时前
摩托车目标检测与识别|基于Mask R-CNN_x101-64x4d_FPN_1x_COCO模型的实现
目标检测·r语言·cnn
是小蟹呀^3 小时前
【论文阅读12】Circle Loss:一统 Softmax 与 Triplet,从“线性”到“圆形”的优化视角
深度学习·分类·circle loss
偷吃的耗子12 小时前
【CNN算法理解】:三、AlexNet 训练模块(附代码)
深度学习·算法·cnn
Faker66363aaa13 小时前
【深度学习】YOLO11-BiFPN多肉植物检测分类模型,从0到1实现植物识别系统,附完整代码与教程_1
人工智能·深度学习·分类
Gofarlic_OMS13 小时前
科学计算领域MATLAB许可证管理工具对比推荐
运维·开发语言·算法·matlab·自动化
【赫兹威客】浩哥14 小时前
无人机视角军事目标细分类检测数据集及多YOLO版本训练验证
yolo·分类·无人机
我爱C编程15 小时前
基于软切换的网络通信系统资源开销优化matlab性能仿真
matlab·网络通信·op·软切换·资源开销优化·asur·masn