轴承故障检测(分类任务)+傅里叶变化+CNN+matlab

1 介绍

使用西储大学的轴承数据集,其实用哪个都行,可能最后的精度会不一样,先读取数据,然后使用傅里叶转换为图像,然后搭建cnn模型,将图像大小转换为模型使用的大小,例如resnet50,输入大小就是224*224。同样提供python版本。

2 数据处理

总共10个类别

对每个数据进行采样,设置2000个样本,每个样本取连续的300个点

matlab 复制代码
% 采样,每个数据采集N条样本,每条样本M长度
M = 2000;
N = 300;
image_index = 1;
sample_all_data = zeros(3, N, M);
for i = 1:10
    sample_class_data = zeros(N, M);
    data = all_data{i};
    % 数据采样
    random_sequence = randperm(length(data) - M);
    selected_numbers = random_sequence(1:N);

    % 对于每个采样的数据,使用fft变换
    for j = 1:N
        start_index = selected_numbers(j);
        sample_data = data(start_index: start_index+M-1);
        sample_class_data(j,:) = sample_data;
        file_path = "images\" +num2str(i) +"\"+ num2str(image_index)+".jpg";
        % 进行fft变换
        process_data(sample_data, file_path)
        image_index = image_index + 1;
    end
    sample_all_data(i,:,:) = sample_class_data;
end

3 fft变换

使用matlab中的变换,转换为频谱图,然后保存,结果如下所示

matlab 复制代码
[S, f, t] = spectrogram(sample_data);

4 cnn模型

搭建一个普通的模型就行,因为这个数据集识别准确率特别高,最后都能到100%

matlab 复制代码
% 设置图像文件夹路径
data_folder = 'images';

% 创建图像数据存储器
imds = imageDatastore(data_folder, ...
    'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[train_imds, test_imds] = splitEachLabel(imds, 0.7, 'randomized');


% 构建 CNN 模型
layers = [
    imageInputLayer([224 224 3])
    convolution2dLayer(3, 16, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 32, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 64, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
];
详情加Q 596520206 同样提供python版本
相关推荐
studytosky1 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
bu_shuo4 小时前
simulink中使用fft进行频谱分析卡死可能的解决方法
matlab·simulink·fft·powergui
Piar1231sdafa4 小时前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
ASD123asfadxv6 小时前
基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
分类·数据挖掘·汽车
技术净胜8 小时前
MATLAB 环境搭建与认知实战教程:从下载安装到入门全解析教程
开发语言·matlab
心疼你的一切8 小时前
计算机视觉_CNN与目标检测实战
人工智能·神经网络·目标检测·计算机视觉·cnn
bu_shuo8 小时前
Simulink保存为低版本模型文件
matlab·simulink
技术净胜9 小时前
MATLAB基本运算与运算符全解析
开发语言·matlab
Java后端的Ai之路9 小时前
【分析式AI】-机器学习的分类以及学派
人工智能·机器学习·分类·aigc·分析式ai
aini_lovee9 小时前
使用BP神经网络进行故障数据分类的方法和MATLAB实现
神经网络·matlab·分类