轴承故障检测(分类任务)+傅里叶变化+CNN+matlab

1 介绍

使用西储大学的轴承数据集,其实用哪个都行,可能最后的精度会不一样,先读取数据,然后使用傅里叶转换为图像,然后搭建cnn模型,将图像大小转换为模型使用的大小,例如resnet50,输入大小就是224*224。同样提供python版本。

2 数据处理

总共10个类别

对每个数据进行采样,设置2000个样本,每个样本取连续的300个点

matlab 复制代码
% 采样,每个数据采集N条样本,每条样本M长度
M = 2000;
N = 300;
image_index = 1;
sample_all_data = zeros(3, N, M);
for i = 1:10
    sample_class_data = zeros(N, M);
    data = all_data{i};
    % 数据采样
    random_sequence = randperm(length(data) - M);
    selected_numbers = random_sequence(1:N);

    % 对于每个采样的数据,使用fft变换
    for j = 1:N
        start_index = selected_numbers(j);
        sample_data = data(start_index: start_index+M-1);
        sample_class_data(j,:) = sample_data;
        file_path = "images\" +num2str(i) +"\"+ num2str(image_index)+".jpg";
        % 进行fft变换
        process_data(sample_data, file_path)
        image_index = image_index + 1;
    end
    sample_all_data(i,:,:) = sample_class_data;
end

3 fft变换

使用matlab中的变换,转换为频谱图,然后保存,结果如下所示

matlab 复制代码
[S, f, t] = spectrogram(sample_data);

4 cnn模型

搭建一个普通的模型就行,因为这个数据集识别准确率特别高,最后都能到100%

matlab 复制代码
% 设置图像文件夹路径
data_folder = 'images';

% 创建图像数据存储器
imds = imageDatastore(data_folder, ...
    'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[train_imds, test_imds] = splitEachLabel(imds, 0.7, 'randomized');


% 构建 CNN 模型
layers = [
    imageInputLayer([224 224 3])
    convolution2dLayer(3, 16, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 32, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 64, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
];
详情加Q 596520206 同样提供python版本
相关推荐
dracula0002 小时前
Simulink建模助手系列-进阶1【界面化并集成到Simulink的右键菜单】
matlab
qq_454245034 小时前
计算机与AI领域中的“上下文”:多维度解析
数据结构·人工智能·分类
Katecat996635 小时前
【深度学习】Faster-RCNN改进:钩子状态识别与分类三种状态自动检测
人工智能·深度学习·分类
是小蟹呀^7 小时前
【论文阅读13】AdaFace:低画质人脸识别的破局之作,用“特征范数”重塑损失函数!
论文阅读·深度学习·分类·adaface
本是少年1 天前
深度学习系列(一):经典卷积神经网络(LeNet)
人工智能·深度学习·cnn
小雨中_1 天前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
Evand J1 天前
matlab GUI制作界面的一些笔记(入门)
开发语言·笔记·matlab
Testopia1 天前
垃圾分类识别:迁移学习在环保领域的应用
分类·数据挖掘·ai编程·迁移学习·#人工智能学习
dracula0001 天前
Simulink建模助手系列-6【自动调整子系统高度和信号线】
matlab
Katecat996631 天前
【深度学习】基于Mask R-CNN的帽子佩戴检测与分类详解(附改进模型+源码)
深度学习·r语言·cnn