利用pytorch两层线性网络对titanic数据集进行分类(kaggle)

利用pytorch两层线性网络对titanic数据集进行分类

最近在看pytorch的入门课程,做了一下在kaggle网站上的作业,用的是titanic数据集,因为想搭一下神经网络,所以数据加载部分简单的把训练集和测试集中有缺失值的列还有含有字符串的列去除了,加入了DataLoader模块,其实这个数据集很小,用不到,本人还没入门,小白一枚。

python 复制代码
import torch 
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets
from torchvision import transforms
import pandas as pd

class titanicDataset(Dataset):
    def __init__(self,filepath):
        xy=np.loadtxt(filepath,delimiter=',',skiprows=1,usecols=[1,2,7,8],dtype=np.float32)
        self.len=xy.shape[0]
        # print(self.len)
        self.y_data=torch.from_numpy(xy[:,[0]])
        self.x_data=torch.from_numpy(xy[:,1:])
        
    def __getitem__(self,index):#获取索引元素 
        return self.x_data[index],self.y_data[index]
    def __len__(self):
        return self.len
dataset=titanicDataset('./pytorch/dataset/titanic/train.csv')
train_loader=DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

# print(dataset.x_data,dataset.y_data)
test_loader=DataLoader(dataset=np.loadtxt('./pytorch/dataset/titanic/test.csv',delimiter=',',skiprows=1,usecols=[1,6,7],dtype=np.float32),batch_size=32,shuffle=False,num_workers=0)
print(next(iter(test_loader)))

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        # self.linear1=torch.nn.Linear(4,3)
        self.linear2=torch.nn.Linear(3,2)
        self.linear3=torch.nn.Linear(2,1)
        self.sigmoid=torch.nn.Sigmoid()
    def forward(self,x):
        # x=self.sigmoid(self.linear1(x))
        x=self.sigmoid(self.linear2(x))
        x=self.sigmoid(self.linear3(x))
        return x
model=Model()
criterion=torch.nn.BCELoss(size_average=True)
optimizer=torch.optim.SGD(model.parameters(),lr=0.1,momentum=0.9)
for epoch in range(10000):
    acc_num=0
    for i,data in enumerate(train_loader,0):
        #1.Prepare data
        inputs,labels=data
        # print(inputs.shape[0])
        #2.Forward
        y_pred=model(inputs)
        loss=criterion(y_pred,labels)
        # print(epoch,i,loss.item())
        #3.Backward
        optimizer.zero_grad()
        loss.backward()
        #4.Update
        optimizer.step()
        y_pred_label=torch.where(y_pred>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
        acc_num+=torch.eq(y_pred_label,labels).sum().item()
    # print(acc_num,len(dataset),len(train_loader.dataset))
    acc=acc_num/len(dataset)
print(acc)
# print(test_loader)
# print(test_loader.dataset.shape)
out = model(torch.tensor(test_loader.dataset))
y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))[:,0]
print(y_pred)
print(pd.Series(y_pred))
id=pd.read_csv('./pytorch/dataset/titanic/test.csv',usecols=['PassengerId']).iloc[:,0]
# print(type(id))

pd.DataFrame({'PassengerId':id,'Survived':pd.Series(y_pred,dtype=int)}).to_csv('pred.csv',index=None)
a=pd.DataFrame([id,pd.Series(y_pred)])
print(a)
# print(y_pred[-10:])


# for x in test_loader:
#     print(x.shape)
#     out = model(x)
#     y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
# print(y_pred)
相关推荐
政安晨30 分钟前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
Forrit7 小时前
ptyorch安装
pytorch
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper9 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习