利用pytorch两层线性网络对titanic数据集进行分类(kaggle)

利用pytorch两层线性网络对titanic数据集进行分类

最近在看pytorch的入门课程,做了一下在kaggle网站上的作业,用的是titanic数据集,因为想搭一下神经网络,所以数据加载部分简单的把训练集和测试集中有缺失值的列还有含有字符串的列去除了,加入了DataLoader模块,其实这个数据集很小,用不到,本人还没入门,小白一枚。

python 复制代码
import torch 
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets
from torchvision import transforms
import pandas as pd

class titanicDataset(Dataset):
    def __init__(self,filepath):
        xy=np.loadtxt(filepath,delimiter=',',skiprows=1,usecols=[1,2,7,8],dtype=np.float32)
        self.len=xy.shape[0]
        # print(self.len)
        self.y_data=torch.from_numpy(xy[:,[0]])
        self.x_data=torch.from_numpy(xy[:,1:])
        
    def __getitem__(self,index):#获取索引元素 
        return self.x_data[index],self.y_data[index]
    def __len__(self):
        return self.len
dataset=titanicDataset('./pytorch/dataset/titanic/train.csv')
train_loader=DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

# print(dataset.x_data,dataset.y_data)
test_loader=DataLoader(dataset=np.loadtxt('./pytorch/dataset/titanic/test.csv',delimiter=',',skiprows=1,usecols=[1,6,7],dtype=np.float32),batch_size=32,shuffle=False,num_workers=0)
print(next(iter(test_loader)))

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        # self.linear1=torch.nn.Linear(4,3)
        self.linear2=torch.nn.Linear(3,2)
        self.linear3=torch.nn.Linear(2,1)
        self.sigmoid=torch.nn.Sigmoid()
    def forward(self,x):
        # x=self.sigmoid(self.linear1(x))
        x=self.sigmoid(self.linear2(x))
        x=self.sigmoid(self.linear3(x))
        return x
model=Model()
criterion=torch.nn.BCELoss(size_average=True)
optimizer=torch.optim.SGD(model.parameters(),lr=0.1,momentum=0.9)
for epoch in range(10000):
    acc_num=0
    for i,data in enumerate(train_loader,0):
        #1.Prepare data
        inputs,labels=data
        # print(inputs.shape[0])
        #2.Forward
        y_pred=model(inputs)
        loss=criterion(y_pred,labels)
        # print(epoch,i,loss.item())
        #3.Backward
        optimizer.zero_grad()
        loss.backward()
        #4.Update
        optimizer.step()
        y_pred_label=torch.where(y_pred>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
        acc_num+=torch.eq(y_pred_label,labels).sum().item()
    # print(acc_num,len(dataset),len(train_loader.dataset))
    acc=acc_num/len(dataset)
print(acc)
# print(test_loader)
# print(test_loader.dataset.shape)
out = model(torch.tensor(test_loader.dataset))
y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))[:,0]
print(y_pred)
print(pd.Series(y_pred))
id=pd.read_csv('./pytorch/dataset/titanic/test.csv',usecols=['PassengerId']).iloc[:,0]
# print(type(id))

pd.DataFrame({'PassengerId':id,'Survived':pd.Series(y_pred,dtype=int)}).to_csv('pred.csv',index=None)
a=pd.DataFrame([id,pd.Series(y_pred)])
print(a)
# print(y_pred[-10:])


# for x in test_loader:
#     print(x.shape)
#     out = model(x)
#     y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
# print(y_pred)
相关推荐
lilu88888881 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜1 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记1 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记1 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜1 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、2 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营3 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao3 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain4 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉
人类群星闪耀时4 小时前
用深度学习优化供应链管理:让算法成为商业决策的引擎
人工智能·深度学习·算法