利用pytorch两层线性网络对titanic数据集进行分类(kaggle)

利用pytorch两层线性网络对titanic数据集进行分类

最近在看pytorch的入门课程,做了一下在kaggle网站上的作业,用的是titanic数据集,因为想搭一下神经网络,所以数据加载部分简单的把训练集和测试集中有缺失值的列还有含有字符串的列去除了,加入了DataLoader模块,其实这个数据集很小,用不到,本人还没入门,小白一枚。

python 复制代码
import torch 
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets
from torchvision import transforms
import pandas as pd

class titanicDataset(Dataset):
    def __init__(self,filepath):
        xy=np.loadtxt(filepath,delimiter=',',skiprows=1,usecols=[1,2,7,8],dtype=np.float32)
        self.len=xy.shape[0]
        # print(self.len)
        self.y_data=torch.from_numpy(xy[:,[0]])
        self.x_data=torch.from_numpy(xy[:,1:])
        
    def __getitem__(self,index):#获取索引元素 
        return self.x_data[index],self.y_data[index]
    def __len__(self):
        return self.len
dataset=titanicDataset('./pytorch/dataset/titanic/train.csv')
train_loader=DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

# print(dataset.x_data,dataset.y_data)
test_loader=DataLoader(dataset=np.loadtxt('./pytorch/dataset/titanic/test.csv',delimiter=',',skiprows=1,usecols=[1,6,7],dtype=np.float32),batch_size=32,shuffle=False,num_workers=0)
print(next(iter(test_loader)))

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        # self.linear1=torch.nn.Linear(4,3)
        self.linear2=torch.nn.Linear(3,2)
        self.linear3=torch.nn.Linear(2,1)
        self.sigmoid=torch.nn.Sigmoid()
    def forward(self,x):
        # x=self.sigmoid(self.linear1(x))
        x=self.sigmoid(self.linear2(x))
        x=self.sigmoid(self.linear3(x))
        return x
model=Model()
criterion=torch.nn.BCELoss(size_average=True)
optimizer=torch.optim.SGD(model.parameters(),lr=0.1,momentum=0.9)
for epoch in range(10000):
    acc_num=0
    for i,data in enumerate(train_loader,0):
        #1.Prepare data
        inputs,labels=data
        # print(inputs.shape[0])
        #2.Forward
        y_pred=model(inputs)
        loss=criterion(y_pred,labels)
        # print(epoch,i,loss.item())
        #3.Backward
        optimizer.zero_grad()
        loss.backward()
        #4.Update
        optimizer.step()
        y_pred_label=torch.where(y_pred>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
        acc_num+=torch.eq(y_pred_label,labels).sum().item()
    # print(acc_num,len(dataset),len(train_loader.dataset))
    acc=acc_num/len(dataset)
print(acc)
# print(test_loader)
# print(test_loader.dataset.shape)
out = model(torch.tensor(test_loader.dataset))
y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))[:,0]
print(y_pred)
print(pd.Series(y_pred))
id=pd.read_csv('./pytorch/dataset/titanic/test.csv',usecols=['PassengerId']).iloc[:,0]
# print(type(id))

pd.DataFrame({'PassengerId':id,'Survived':pd.Series(y_pred,dtype=int)}).to_csv('pred.csv',index=None)
a=pd.DataFrame([id,pd.Series(y_pred)])
print(a)
# print(y_pred[-10:])


# for x in test_loader:
#     print(x.shape)
#     out = model(x)
#     y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
# print(y_pred)
相关推荐
kngines18 分钟前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey18 分钟前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币25 分钟前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争1 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道1 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
算家计算1 小时前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源
摆烂工程师1 小时前
国内如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·ai编程·claude
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法