利用pytorch两层线性网络对titanic数据集进行分类(kaggle)

利用pytorch两层线性网络对titanic数据集进行分类

最近在看pytorch的入门课程,做了一下在kaggle网站上的作业,用的是titanic数据集,因为想搭一下神经网络,所以数据加载部分简单的把训练集和测试集中有缺失值的列还有含有字符串的列去除了,加入了DataLoader模块,其实这个数据集很小,用不到,本人还没入门,小白一枚。

python 复制代码
import torch 
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets
from torchvision import transforms
import pandas as pd

class titanicDataset(Dataset):
    def __init__(self,filepath):
        xy=np.loadtxt(filepath,delimiter=',',skiprows=1,usecols=[1,2,7,8],dtype=np.float32)
        self.len=xy.shape[0]
        # print(self.len)
        self.y_data=torch.from_numpy(xy[:,[0]])
        self.x_data=torch.from_numpy(xy[:,1:])
        
    def __getitem__(self,index):#获取索引元素 
        return self.x_data[index],self.y_data[index]
    def __len__(self):
        return self.len
dataset=titanicDataset('./pytorch/dataset/titanic/train.csv')
train_loader=DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

# print(dataset.x_data,dataset.y_data)
test_loader=DataLoader(dataset=np.loadtxt('./pytorch/dataset/titanic/test.csv',delimiter=',',skiprows=1,usecols=[1,6,7],dtype=np.float32),batch_size=32,shuffle=False,num_workers=0)
print(next(iter(test_loader)))

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        # self.linear1=torch.nn.Linear(4,3)
        self.linear2=torch.nn.Linear(3,2)
        self.linear3=torch.nn.Linear(2,1)
        self.sigmoid=torch.nn.Sigmoid()
    def forward(self,x):
        # x=self.sigmoid(self.linear1(x))
        x=self.sigmoid(self.linear2(x))
        x=self.sigmoid(self.linear3(x))
        return x
model=Model()
criterion=torch.nn.BCELoss(size_average=True)
optimizer=torch.optim.SGD(model.parameters(),lr=0.1,momentum=0.9)
for epoch in range(10000):
    acc_num=0
    for i,data in enumerate(train_loader,0):
        #1.Prepare data
        inputs,labels=data
        # print(inputs.shape[0])
        #2.Forward
        y_pred=model(inputs)
        loss=criterion(y_pred,labels)
        # print(epoch,i,loss.item())
        #3.Backward
        optimizer.zero_grad()
        loss.backward()
        #4.Update
        optimizer.step()
        y_pred_label=torch.where(y_pred>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
        acc_num+=torch.eq(y_pred_label,labels).sum().item()
    # print(acc_num,len(dataset),len(train_loader.dataset))
    acc=acc_num/len(dataset)
print(acc)
# print(test_loader)
# print(test_loader.dataset.shape)
out = model(torch.tensor(test_loader.dataset))
y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))[:,0]
print(y_pred)
print(pd.Series(y_pred))
id=pd.read_csv('./pytorch/dataset/titanic/test.csv',usecols=['PassengerId']).iloc[:,0]
# print(type(id))

pd.DataFrame({'PassengerId':id,'Survived':pd.Series(y_pred,dtype=int)}).to_csv('pred.csv',index=None)
a=pd.DataFrame([id,pd.Series(y_pred)])
print(a)
# print(y_pred[-10:])


# for x in test_loader:
#     print(x.shape)
#     out = model(x)
#     y_pred = torch.where(out>0.5,torch.tensor([1.0]),torch.tensor([0.0]))
# print(y_pred)
相关推荐
机器之心几秒前
字节做了个 AI 手机,钉钉做了台 AI 主机
人工智能·openai
天一生水water几秒前
nano banana pro绘图示例
人工智能·智慧油田
机器之心2 分钟前
实测MiniMax M2.1之后,我们终于看懂了其招股书里的技术底气
人工智能·openai
AI小怪兽2 分钟前
YOLO11-4K:面向4K全景图像实时小目标检测的高效架构
人工智能·目标检测·计算机视觉·目标跟踪·架构
CICI131414132 分钟前
焊接机器人负载能力选择标准
网络·数据库·人工智能
阿_旭6 分钟前
【PyTorch】20个核心概念详解:从基础到实战的深度学习指南
人工智能·pytorch·深度学习
Guheyunyi11 分钟前
视频安全监测系统的三大核心突破
大数据·运维·服务器·人工智能·安全·音视频
石像鬼₧魂石12 分钟前
HexStrike AI 理想操作流程清单(完整功能版)
linux·人工智能·windows·学习·ubuntu
阿里云大数据AI技术31 分钟前
【NeurIPS2025】阿里云PAI团队动态数据调度方案Skrull 入选
人工智能
硬汉嵌入式32 分钟前
VisualGDB 6.1 Beta5版本,正式引入全新的高速AI编辑引擎,专为C/C++项目量身打造
人工智能·visualgdb