电力负荷超前96步预测,采用2024最新鹭鹰算法优化ELM实现,MATLAB代码

本期电力负荷预测数据来源为:《第九届电工数学建模竞赛试题_2016》

数据概况如下:

简介

本期内容:

①对电力负荷数据进行简单综合处理,划分训练集和测试集

②采用标准的极限学习机ELM实现电力负荷预测

③采用2024年最新鹭鹰算法优化极限学习机的权值阈值,降低预测误差

④采用白鲸算法 优化ELM,并与鹭鹰算法对比,突出鹭鹰算法的高效准确性

内容详解

①对电力负荷数据进行处理

本次数据包含最高温度℃,最低温度℃,平均温度℃,相对湿度(平均),降雨量(mm)部分数据截图如下:

数据的处理方式如下:

将2012年1月1号到2015年1月17号的负荷数据和天气数据(因为只有这几天的数据是既有天气特征,又有负荷数据的)综合到一起,得到data变量。

选取前6天数据(包括负荷和当天的最高温度℃,最低温度℃,平均温度℃,相对湿度(平均),降雨量(mm))去预测未来一天的数据。

代码中一共选取了60个样本作为训练集。

1个样本作为测试集,实现未来一天,也就是实现超前96个时刻的负荷预。

将MAPE作为误差指标(很多文献都这么做!)。

②采用极限学习机(ELM)对电力负荷数据进行训练和预测

预测结果如下:

可以看到,未优化的ELM预测效果不是很理想。

③采用 2024年最新鹭鹰算法优化极限学习机的权值阈值,并与白鲸算法做对比。

由误差对比曲线和预测结果对比,可以看到鹭鹰算法(SBOA)优化ELM的收敛精度是非常高的!

原理代码

数据替换较为简单,代码简单易懂,可以二次开发。

代码获取

代码目录如下:

完整代码获取:

https://mbd.pub/o/bread/mbd-ZpWXk51x

已将本文算法加入MATLAB机器学习预测全家桶中

机器学习预测全家桶代码获取

已将本文算法加入机器学习预测全家桶中,需要的小伙伴可以跳转链接获取:

https://mbd.pub/o/bread/ZZmWk5xp

识别此二维码也可跳转全家桶

或点击下方阅读原文获取此全家桶。

相关推荐
Zhen (Evan) Wang10 分钟前
(豆包)xgb.XGBRegressor 如何进行参数调优
开发语言·python
我爱一条柴ya15 分钟前
【AI大模型】线性回归:经典算法的深度解析与实战指南
人工智能·python·算法·ai·ai编程
虾球xz24 分钟前
CppCon 2018 学习:THE MOST VALUABLE VALUES
开发语言·c++·学习
阿蒙Amon1 小时前
C#扩展方法全解析:给现有类型插上翅膀的魔法
开发语言·c#
尘浮7282 小时前
60天python训练计划----day59
开发语言·python
三维重建-光栅投影2 小时前
VS中将cuda项目编译为DLL并调用
算法
Chef_Chen2 小时前
从0开始学习R语言--Day39--Spearman 秩相关
开发语言·学习·r语言
不学会Ⅳ2 小时前
Mac M芯片搭建jdk源码环境(jdk24)
java·开发语言·macos
好开心啊没烦恼3 小时前
Python 数据分析:计算,分组统计1,df.groupby()。听故事学知识点怎么这么容易?
开发语言·python·数据挖掘·数据分析·pandas
lljss20204 小时前
Python11中创建虚拟环境、安装 TensorFlow
开发语言·python·tensorflow