VIT(transformer在计算机视觉方面的应用)

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

os.environ["KERAS_BACKEND"] = "tensorflow"

import keras

from keras import layers

from keras import ops

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

num_classes = 10

input_shape = (32,32,3)

(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()

learning_rate = 1e-3

weight_decay = 1e-4

batch_size = 64

num_epochs = 30

image_size = 72 # 重设图片大小

patch_size = 6 #每个小块的大小

num_patches = (image_size // patch_size) ** 2#被分成了多少小块

projection_dim = 64

num_heads = 4

transformer_units = [

projection_dim *4,

projection_dim,

]

transformer_layers = 8

mlp_head_units = [

2048,

1024,

]

data_augmentation = keras.Sequential(

[

layers.Rescaling(scale=1.0 / 255),

layers.Resizing(image_size, image_size),

layers.RandomFlip("horizontal"),

layers.RandomRotation(factor=0.02),

layers.RandomZoom(height_factor=0.1, width_factor=0.1),

],

name="data_augmentation",

)

val_split = 0.1

val_indices = int(len(x_train) * val_split)

new_x_train, new_y_train = x_train[val_indices:], y_train[val_indices:]

x_val, y_val = x_train[:val_indices], y_train[:val_indices]

auto = tf.data.AUTOTUNE

def make_datasets(images, labels, is_train=False):

dataset = tf.data.Dataset.from_tensor_slices((images, labels))

if is_train:

dataset = dataset.shuffle(batch_size * 20)

dataset = dataset.batch(batch_size)

return dataset.prefetch(auto)

train_dataset = make_datasets(new_x_train, new_y_train, is_train=True)

val_dataset = make_datasets(x_val, y_val)

test_dataset = make_datasets(x_test, y_test)

#线性转换层

def mlp(x, hidden_units,dropout_rate):

for units in hidden_units:

x = layers.Dense(units, activation=keras.activations.gelu)(x)

x = layers.Dropout(dropout_rate)(x)

return x

class Patches(layers.Layer):#把图片分块

def init(self, patch_size):

super().init()

self.patch_size = patch_size

def call(self, images):

input_shape = ops.shape(images)

batch_size = input_shape[0]#批次大小

height = input_shape[1]#高

width = input_shape[2]#宽

channels =input_shape[-1]#通道

num_patches_h = height // self.patch_size#12个小块

num_patches_w = width // self.patch_size

小块数据

patches = keras.ops.image.extract_patches(images, size=self.patch_size)

print(patches.shape)#(1,12,12,6*6*3)

#1指一个样本,7是行,列被分成7小区间,16是1*4*4,是每个小块的像素值

patches = ops.reshape(

patches,

(

batch_size,

num_patches_h * num_patches_w,

self.patch_size * self.patch_size * channels,

),

)

#变形之后,(1,144,6*6*3),样本,小块,每个小块的像素值

print(patches.shape) #(1,144,6*6*3)

return patches

def get_config(self):#获取层配置信息

config = super().get_config()

config.update({"patch_size": self.patch_size})

return config

plt.figure(figsize=(4, 4))

image = x_train[np.random.choice(range(x_train.shape[0]))]#随机选取一张图片

print(image.shape,image.max(),image.min())

plt.imshow(image.astype("uint8"))

plt.axis("off")

resized_image = ops.image.resize(

ops.convert_to_tensor([image.astype('float32')]), size=(image_size, image_size)

)

patches = Patches(patch_size)(resized_image)

n = int(np.sqrt(patches.shape[1]))#n=12

print(n,patches[0].shape)

plt.figure(figsize=(4,4))

for i, patch in enumerate(patches[0]):#(49,16)

print(patch.shape)#(108,)

ax = plt.subplot(n,n, i + 1)

patch_img = ops.reshape(patch, (patch_size, patch_size,3))#变形成(6,6,3)

print(patch_img.numpy().max(),type(patch_img))#每个小块图的像素大小都不一样

plt.imshow(patch_img.numpy().astype("uint8"))

plt.axis("off")#不显示轴

plt.show()

#图块的编码层(加了位置信息)

class PatchEncoder(layers.Layer):

def init(self, num_patches, projection_dim):

super().init()

self.num_patches = num_patches#多少块

self.projection = layers.Dense(projection_dim)#线性转换

self.position_embedding = layers.Embedding(#位置编码

input_dim=num_patches, output_dim=projection_dim

)

def call(self, patch):

在0轴增加维度,变成2维(1,144)

positions = ops.expand_dims(

ops.arange(start=0, stop=self.num_patches, step=1), axis=0

)

projected_patches = self.projection(patch)#(None,144,108)-->(None,144,64)

print(projected_patches.shape)

#(1,144,64)+ (1,144)--->(1,144,64)

encoded = projected_patches + self.position_embedding(positions)

print(encoded.shape)

return encoded

def get_config(self):

config = super().get_config()

config.update({"num_patches": self.num_patches})

return config

def create_vit_classifier():#构建vit model

inputs = keras.Input(shape=input_shape)#(32,32,3)

数据增强

augmented = data_augmentation(inputs)

创建小区域图块(1,144,108)#原图(32,32,3),path_size=6,144是指144个小块,108是

6*6*3,3通道

patches = Patches(patch_size)(augmented)

对图像区块编码,编码后形状(1,144,108)

encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)

print(f'{encoded_patches.shape=}')

for _ in range(transformer_layers):#迭代4次,相当于经过了4个编码器层

标准化到1

x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)

#多头自注意力层,num_heads:4,projection_dim:64,attention_output(None, 49, 64)

x1最后一维是64,所以分给每个头16维,这样才是利用了多头,key_dim=16

attention_output = layers.MultiHeadAttention(

num_heads=num_heads,key_dim=projection_dim//num_heads,dropout=0.1 )(x1, x1)

print(f'{attention_output.shape=}')

#残差连接

x2 = layers.Add()([attention_output, encoded_patches])

x3 = layers.LayerNormalization(epsilon=1e-6)(x2)

前馈全连接(线性转换层)

x3 = mlp(x3, hidden_units=transformer_units,dropout_rate=0.1)

(64)残差连接

encoded_patches = layers.Add()([x3, x2])

print(f'{encoded_patches=}')#((None, 144, 64)

representation = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)

#用全局平均池化可以减少参数量

representation=layers.GlobalAveragePooling1D()(representation)

representation = layers.Flatten()(representation)

representation = layers.Dropout(0.5)(representation)

线性转换层

features = mlp(representation, hidden_units=mlp_head_units,dropout_rate=0.2)

10分类

logits = layers.Dense(num_classes)(representation)

Create the Keras model.

model = keras.Model(inputs=inputs, outputs=logits)

return model

vit_classifier = create_vit_classifier()

vit_classifier.summary()# 49*64+16*64+64

#weight_decay:权重衰减系数

optimizer = keras.optimizers.AdamW(

learning_rate=learning_rate, weight_decay=weight_decay

)

vit_classifier.compile(

optimizer=optimizer,

loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=[

keras.metrics.SparseCategoricalAccuracy(name="acc")

],

)

from tensorflow.keras.callbacks import ReduceLROnPlateau

checkpoint_filepath = "./checkpoint/cifar10_transformer_best_1.keras"

callbacks = [ keras.callbacks.ModelCheckpoint(

filepath=checkpoint_filepath,monitor='val_loss',\

verbose=1,save_best_only=True,mode='min'),

ReduceLROnPlateau(monitor='val_loss', factor=0.5,

patience=2, min_lr=8e-6)]

history = vit_classifier.fit(

train_dataset,

epochs=30,

validation_data=val_dataset,

callbacks=[callbacks]

)

vit_classifier.load_weights(checkpoint_filepath)

_, acc = vit_classifier.evaluate(test_dataset)

print("Test accuracy: %.2f %%" %(acc*100))

def plot_history(item):

plt.plot(history.history[item], label=item)

plt.plot(history.history["val_" + item], label="val_" + item)

plt.xlabel("Epochs")

plt.ylabel(item)

plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14)

plt.legend()

plt.grid()

plt.show()

plot_history("loss")

相关推荐
盼小辉丶12 分钟前
TensorFlow深度学习实战(2)——使用TensorFlow构建神经网络
深度学习·神经网络·tensorflow
18号房客25 分钟前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
云空2 小时前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
长风清留扬3 小时前
基于OpenAI Whisper AI模型自动生成视频字幕:全面解析与实战指南
人工智能·神经网络·opencv·计算机视觉·自然语言处理·数据挖掘·whisper
volcanical7 小时前
Dataset Distillation with Attention Labels for Fine-tuning BERT
人工智能·深度学习·bert
Captain823Jack10 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
Captain823Jack10 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
itwangyang52011 小时前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习
落魄君子11 小时前
GA-BP回归-遗传算法(Genetic Algorithm)和反向传播神经网络(Backpropagation Neural Network)
神经网络·数据挖掘·回归
mingo_敏11 小时前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习