OpenCV(六) —— Android 下的人脸识别

本篇我们来介绍在 Android 下如何实现人脸识别。

上一篇我们介绍了如何在 Windows 下通过 OpenCV 实现人脸识别,实际上,在 Android 下的实现的核心原理是非常相似的,因为 OpenCV 部分的代码改动不大,绝大部分代码可以直接移植到 Android 上。最主要的区别是,Android 摄像头采集图像的代码要复杂一些,而 Windows 下几行代码就搞定了。

目前有四种方式来使用 Android Camera:

  • Camera1:虽然被 @Deprecated 了,但是很多产品中仍然在使用它,比如一些推流 SDK
  • Camera2:比 Camera1 更灵活,可定制性更强,但是用起来有些麻烦
  • CameraX:Jetpack 组件,封装了 Camera2,通过提供一致且易用的 API 接口来简化相机应用的开发工作
  • NDKCamera:无法兼容低版本

我们会介绍 Camera1 和 CameraX 两种方式。

1、使用 Camera1 进行人脸识别

1.1 开启摄像头

我们将 Camera1 的相关操作封装到 CameraHelper 中:

kotlin 复制代码
class CameraHelper(
    private var mCameraId: Int,
    private var mHeight: Int,
    private var mWidth: Int
) : Camera.PreviewCallback {

    private var mCamera: Camera? = null
    private lateinit var mBuffer: ByteArray
    private var mPreviewCallback: Camera.PreviewCallback? = null

    fun startPreview() {
        // 开启摄像头,获取 Camera 对象
        mCamera = Camera.open(mCameraId)
        if (mCamera == null) {
            Log.d(TAG, "Open camera failed.")
            return
        }
        // 配置 Camera 参数
        val cameraParams = mCamera?.parameters
        // 设置预览数据格式为 NV21
        cameraParams?.previewFormat = ImageFormat.NV21
        // 设置摄像头宽高
        cameraParams?.setPreviewSize(mWidth,mHeight)
        // 更新 Camera 参数
        mCamera?.parameters = cameraParams
        // 摄像头采集的是 YUV NV21 格式的数据,mBuffer 承载预览数据
        mBuffer = ByteArray(mWidth * mHeight * 3 / 2)
        // 设置预览的回调以及缓冲区
        // 将摄像头获取的数据放入 mBuffer
        mCamera?.addCallbackBuffer(mBuffer)
        mCamera?.setPreviewCallbackWithBuffer(this)
        // 设置预览画面
        mCamera?.setPreviewTexture(SurfaceTexture(11))
        mCamera?.startPreview()
    }

    private fun stopPreview() {
        mCamera?.setPreviewCallback(null)
        mCamera?.stopPreview()
        mCamera?.release()
        mCamera = null
    }

    override fun onPreviewFrame(data: ByteArray?, camera: Camera?) {
        if (data == null) {
            Log.d(TAG, "onPreviewFrame: data 为空,直接返回")
            return
        }
        // 注意回调给外界的图像是横向的
        mPreviewCallback?.onPreviewFrame(data, camera)
        mCamera?.addCallbackBuffer(mBuffer)
    }

    fun switchCamera() {
        // 切换摄像头 ID 再重启预览
        mCameraId = if (mCameraId == Camera.CameraInfo.CAMERA_FACING_FRONT) {
            Camera.CameraInfo.CAMERA_FACING_BACK
        } else {
            Camera.CameraInfo.CAMERA_FACING_FRONT
        }
        stopPreview()
        startPreview()
    }

    fun setPreviewCallback(previewCallback: Camera.PreviewCallback) {
        mPreviewCallback = previewCallback
    }
	...
}

需要特别注意 startPreview() 内设置预览画面要设置给 SurfaceTexture 而不是 SurfaceHolder。因为 SurfaceHolder 是会对 SurfaceView.SurfaceHolder.getSurface() 获取到的 Surface 对象的生命周期和渲染进行直接管理的,这就导致我们在 Native 层获取由该 Surface 创建的 ANativeWindow 的锁,即调用 ANativeWindow_lock() 会一直失败,进而无法渲染。

由于我们需要在 Native 层将 OpenCV 识别的人脸范围用矩形框画出来,所以预览就交给 SurfaceTexture。

接下来由 Activity 控制 CameraHelper 开启预览:

kotlin 复制代码
	private lateinit var mOpenCVJNI: OpenCVJNI
    private lateinit var mCameraHelper: CameraHelper
    private var mCameraId = Camera.CameraInfo.CAMERA_FACING_FRONT

	override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        val binding = ActivityMainBinding.inflate(layoutInflater)
        setContentView(binding.root)

        binding.surfaceView.holder.addCallback(this)
        binding.btnSwitchCamera.setOnClickListener {
            mCameraHelper.switchCamera()
            mCameraId = mCameraHelper.getCameraId()
        }

        mOpenCVJNI = OpenCVJNI()
        mCameraHelper = CameraHelper(mCameraId, 480, 640)
        mCameraHelper.setPreviewCallback(this)

        // 将 assets 下的 lbpcascade_frontalface.xml 拷贝到手机同名文件中
        Utils.copyAssets(this, "lbpcascade_frontalface.xml")
    }

	override fun onResume() {
        super.onResume()

        // 开启摄像头预览
        mCameraHelper.startPreview()

        // 初始化 OpenCV
        val path = File(
            Environment.getExternalStorageDirectory(),
            "lbpcascade_frontalface.xml"
        ).absolutePath
        mOpenCVJNI.init(path)
    }

这样我们就可以在页面中看到摄像头采集到的预览画面了。

1.2 其余初始化工作

开启摄像头的代码中,有涉及到创建以及初始化 OpenCVJNI 对象,该对象就是上层与 Native 层 OpenCV API 交互的桥梁:

kotlin 复制代码
class OpenCVJNI {

    fun init(path: String) {
        nativeInit(path)
    }

    fun postData(data: ByteArray, width: Int, height: Int, cameraId: Int) {
        nativePostData(data, width, height, cameraId)
    }

    fun setSurface(surface: Surface) {
        nativeSetSurface(surface)
    }

    private external fun nativeInit(path: String)
    private external fun nativePostData(data: ByteArray, width: Int, height: Int, cameraId: Int)
    private external fun nativeSetSurface(surface: Surface)

    companion object {
        init {
            System.loadLibrary("opencv")
        }
    }
}

由于 Windows Demo 中我们使用的是 HAAR 级联分类器,所以 Android Demo 我们换一个,使用 LBP 级联分类器。将 OpenCV-android-sdk\sdk\etc\lbpcascades\lbpcascade_frontalface.xml 拷贝到项目的 /src/main/assets/ 目录下。并通过 copyAssets() 将文件拷贝到手机中:

kotlin 复制代码
class Utils {

    companion object {

        /**
         * 将 assets 目录下的文件 path 的内容复制到手机的 path 文件中
         */
        fun copyAssets(context: Context, path: String) {
            val file = File(Environment.getExternalStorageDirectory(), path)
            if (file.exists()) {
                file.delete()
            }

            var fileOutputStream: FileOutputStream? = null
            var inputStream: InputStream? = null
            try {
                fileOutputStream = FileOutputStream(file)
                inputStream = context.assets.open(path)

                val buffer = ByteArray(2048)
                var length = inputStream.read(buffer)
                while (length > 0) {
                    fileOutputStream.write(buffer, 0, length)
                    length = inputStream.read(buffer)
                }
            } catch (e: Exception) {
                e.printStackTrace()
            } finally {
                fileOutputStream?.close()
                inputStream?.close()
            }
        }
    }
}

上层代码基本就这样了,接下来就是看上层如何调用 OpenCV 的 Native API 实现人脸识别了。

1.3 Native 层实现

Native 层实现主要包括三方面:

  1. OpenCV 的初始化
  2. 负责底层绘制的 ANativeWindow 初始化
  3. 接收上层传递的图像数据进行识别

OpenCV 的初始化是通过 OpenCVJNI 的 init() 调用 Native 方法 nativeInit() 实现的:

cpp 复制代码
#include "opencv2/opencv.hpp"
#include <jni.h>
#include <android/native_window_jni.h>

using namespace cv;

DetectionBasedTracker *tracker = nullptr;

class CascadeDetectorAdapter : public DetectionBasedTracker::IDetector {
public:
    CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector) :
            IDetector(),
            Detector(detector) {
    }

    // 检测人脸的函数,Mat 相当于 Android 的一张 Bitmap。一张图片有几个人脸就会调用本方法几次
    void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects) {
        Detector->detectMultiScale(Image, objects, scaleFactor,
                                   minNeighbours, 0, minObjSize, maxObjSize);
    }

    virtual ~CascadeDetectorAdapter() = default;

private:
    CascadeDetectorAdapter();

    cv::Ptr<cv::CascadeClassifier> Detector;
};

extern "C"
JNIEXPORT void JNICALL
Java_com_face_recognition1_OpenCVJNI_nativeInit(JNIEnv *env, jobject thiz, jstring path_) {
    const char *path = env->GetStringUTFChars(path_, nullptr);

    // 创建检测器
    Ptr<CascadeClassifier> detectorClassifier = makePtr<CascadeClassifier>(path);
    Ptr<CascadeDetectorAdapter> mainDetector = makePtr<CascadeDetectorAdapter>(detectorClassifier);
    // 创建跟踪器
    Ptr<CascadeClassifier> trackerClassifier = makePtr<CascadeClassifier>(path);
    Ptr<CascadeDetectorAdapter> trackingDetector = makePtr<CascadeDetectorAdapter>(
            trackerClassifier);

    // 创建 DetectionBasedTracker
    DetectionBasedTracker::Parameters detectionParams;
    tracker = new DetectionBasedTracker(mainDetector, trackingDetector, detectionParams);
    // run() 会开启维护死循环的线程,当开启摄像头预览调用 tracker->process() 
    // 传入人脸数据时,线程会返回一个包含人脸结构的 face 集合给你
    tracker->run();

    env->ReleaseStringUTFChars(path_, path);
}

与 Windows 几乎相同,创建 DetectionBasedTracker 需要主检测器 mainDetector 和跟踪器 trackingDetector,创建两个适配器所需的 CascadeDetectorAdapter 还是来自 OpenCV 的官方 Sample 代码。

然后是底层绘制窗口 ANativeWindow 的初始化。它的初始化由 Activity 的 SurfaceView 的创建/变化触发:

kotlin 复制代码
class MainActivity : AppCompatActivity(), Camera.PreviewCallback, SurfaceHolder.Callback {
    // SurfaceHolder.Callback start
    override fun surfaceCreated(holder: SurfaceHolder) {
    }

    override fun surfaceChanged(holder: SurfaceHolder, format: Int, width: Int, height: Int) {
        mOpenCVJNI.setSurface(holder.surface)
    }

    override fun surfaceDestroyed(holder: SurfaceHolder) {
    }
    // SurfaceHolder.Callback end
}

进入到 Native 层,需要先释放原有的 ANativeWindow 对象重新分配:

cpp 复制代码
extern "C"
JNIEXPORT void JNICALL
Java_com_face_recognition1_OpenCVJNI_nativeSetSurface(JNIEnv *env, jobject thiz, jobject surface) {
    if (window) {
        ANativeWindow_release(window);
        window = nullptr;
    }

    window = ANativeWindow_fromSurface(env, surface);
}

最后就是通过 ANativeWindow 绘制了,绘制的数据来自于上层 Camera 的回调数据:

kotlin 复制代码
class MainActivity : AppCompatActivity(), Camera.PreviewCallback, SurfaceHolder.Callback {
    override fun onPreviewFrame(data: ByteArray?, camera: Camera?) {
        if (data == null) {
            return
        }

        mOpenCVJNI.postData(data, mCameraHelper.getWidth(), mCameraHelper.getHeight(), mCameraId)
    }
}

Native 层拿到 data 先用 OpenCV 进行人脸识别,在识别出来的人脸区域画一个矩形:

cpp 复制代码
/**
 * 中间过程可以通过 imwrite(String,Mat) 将 Mat 图片输出到手机
 * 指定路径查看中间效果以验证编程是否正确
 */
extern "C"
JNIEXPORT void JNICALL
Java_com_face_recognition1_OpenCVJNI_nativePostData(JNIEnv *env, jobject thiz, jbyteArray data_,
                                                    jint width, jint height, jint camera_id) {
    jbyte *data = env->GetByteArrayElements(data_, nullptr);

    // 创建一个 Mat 对象,Mat 相当于一张 Bitmap,由于传入的是 YUV 数据,因此高度是像素高度的 3/2
    Mat src(height * 3 / 2, width, CV_8UC1, data);
    // 将 src 内的 NV21 数据转换为 RGBA 数据后再赋值给 src
    cvtColor(src, src, COLOR_YUV2RGBA_NV21);
    // 对原始摄像头图像进行旋转调正
    if (camera_id == 1) {
        // 前置摄像头需要逆时针旋转 90°
        rotate(src, src, ROTATE_90_COUNTERCLOCKWISE);
        // 前置还需要取一个水平方向的镜像,如果传 0 就是竖直方向
        flip(src, src, 1);
    } else {
        // 后置摄像头需要顺时针旋转 90°
        rotate(src, src, ROTATE_90_CLOCKWISE);
    }

    // 图片调整后开始进行识别,首先要将图片转换为灰度图,可以减少杂色增加识别几率
    Mat gray;
    cvtColor(src, gray, COLOR_RGBA2GRAY);

    // 增强对比度,目的是增强轮廓(因为识别是对轮廓进行识别)
    equalizeHist(gray, gray);

    // 检测人脸,结果保存到 faces 中
    std::vector<Rect> faces;
    tracker->process(gray);
    tracker->getObjects(faces);

    // 遍历检测到的人脸(一张图片内可能有多个人脸)
    for (const Rect &face: faces) {
        // 画个方框
        rectangle(src, face, Scalar(255, 0, 255));
        // 如果需要获取训练素材,就将人脸图像转换成 24 * 24 的灰度图保存到手机指定目录中
        if (needTraining) {
            // 拷贝人脸数据(获取正样本)
            Mat m;
            src(face).copyTo(m);
            // 将大小调整为 24x24 的,并且设置为灰度图,然后拷贝到手机的指定目录下
            resize(m, m, Size(24, 24));
            cvtColor(m, m, COLOR_BGR2GRAY);
            char p[100];
            // 注意如果路径不存在需要手动先创建文件夹,否则不会自动生成目录
            sprintf(p, "/storage/emulated/0/FaceTest/%d.jpg", index++);
            imwrite(p, m);
        }
    }

    if (window) {
        ANativeWindow_setBuffersGeometry(window, src.cols, src.rows, WINDOW_FORMAT_RGBA_8888);
        ANativeWindow_Buffer window_buffer;
        do {
            // 如果上锁失败就直接 break
            // 起初一直上锁失败,原因是 CameraHelper 中使用 SurfaceHolder 进行预览而不是 SurfaceTexture
            if (ANativeWindow_lock(window, &window_buffer, nullptr)) {
                ANativeWindow_release(window);
                window = nullptr;
                break;
            }

            // 画图,将 Mat 的 data 指针指向的像素数据逐行拷贝到 window_buffer.bits 中
            auto dst_data = static_cast<uint8_t *>(window_buffer.bits);
            int dst_line_size = window_buffer.stride * 4;
            for (int i = 0; i < window_buffer.height; ++i) {
                // Mat 内的数据是 RGBA,因此计算每行首地址时,要在后面乘以 4,表示 RGBA8888 各占 1 个字节
                memcpy(dst_data + i * dst_line_size, src.data + i * src.cols * 4, dst_line_size);
            }

            // 提交刷新
            ANativeWindow_unlockAndPost(window);
        } while (false);
    }

    src.release();
    gray.release();

    env->ReleaseByteArrayElements(data_, data, 0);
}

主要步骤,包括获取人脸训练素材的步骤都与 Windows 基本一致,区别在于 Android 需要将摄像头采集的图像旋转 90° 调正,并且需要将图像数据拷贝到 ANativeWindow 的缓冲区以实现图像渲染。

使用 Android 后置摄像头进行人脸识别的效果如下:

2、使用 CameraX 进行人脸识别

2.1 初始化

首先引入 CameraX 的依赖,完整的引入内容如下,但是本 Demo 只用到了 core、camera2 和 lifecycle 三项:

groovy 复制代码
dependencies {
  def camerax_version = "1.0.0"
  // The following line is optional, as the core library is included indirectly by camera-camera2
  implementation "androidx.camera:camera-core:${camerax_version}"
  implementation "androidx.camera:camera-camera2:${camerax_version}"
  // If you want to additionally use the CameraX Lifecycle library
  implementation "androidx.camera:camera-lifecycle:${camerax_version}"
  // If you want to additionally use the CameraX View class
  implementation "androidx.camera:camera-view:${camerax_version}"
  // If you want to additionally use the CameraX Extensions library
  implementation "androidx.camera:camera-extensions:${camerax_version}"
}

由于 CameraX 已经对 Camera2 进行了封装,因此我们可以直接使用,而无需像前面的例子那样自己封装一个 CameraHelper 了。

首先我们在 Activity 的 onCreate() 中进行初始化工作:

kotlin 复制代码
class RecognitionActivity : AppCompatActivity(), SurfaceHolder.Callback, ImageAnalysis.Analyzer {
    
	private lateinit var mCameraProviderFuture: ListenableFuture<ProcessCameraProvider>
    private lateinit var mFaceTracker: FaceTracker

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        val binding = ActivityRecognitionBinding.inflate(layoutInflater)
        setContentView(binding.root)

        // 权限申请
        ActivityCompat.requestPermissions(
            this,
            arrayOf(Manifest.permission.CAMERA, Manifest.permission.WRITE_EXTERNAL_STORAGE),
            REQUEST_CODE
        )

        // 为 SurfaceHolder 设置回调接口
        binding.surfaceView.holder.addCallback(this)

        // CameraX 初始化,异步获取 CameraProvider 对象
        mCameraProviderFuture = ProcessCameraProvider.getInstance(this)
        mCameraProviderFuture.addListener({
            try {
                val cameraProvider = mCameraProviderFuture.get()
                bindAnalysis(cameraProvider)
            } catch (e: Exception) {
                e.printStackTrace()
            }
        }, ContextCompat.getMainExecutor(this))

        // 将识别模型拷贝到手机中
        val modelPath = Utils.copyAsset2Dir(this, "lbpcascade_frontalface.xml")

        // 初始化 FaceTracker 开启人脸检测
        mFaceTracker = FaceTracker(modelPath)
        mFaceTracker.start()
    }
}

CameraX

对 CameraX 进行异步初始化,先通过 ProcessCameraProvider.getInstance() 获取到 ListenableFuture<ProcessCameraProvider>

java 复制代码
	/**
	* Futures.transform() 的三个参数:
	* CameraX.getOrCreateInstance() 会返回一个包含已经初始化的 CameraX 对象的 ListenableFuture
	* cameraX -> {} 是一个函数,参数 cameraX 是第一个参数的泛型对象,即 CameraX
	* CameraXExecutors.directExecutor() 会返回主调线程中缓存的会直接执行任务的 Executor
	* 会在指定的 Executor 中异步执行函数
	*/
	public static ListenableFuture<ProcessCameraProvider> getInstance(
            @NonNull Context context) {
        Preconditions.checkNotNull(context);
        return Futures.transform(CameraX.getOrCreateInstance(context), cameraX ->  {
            sAppInstance.setCameraX(cameraX);
            return sAppInstance;
        }, CameraXExecutors.directExecutor());
    }

随后为 mCameraProviderFuture 设置监听,异步获取到 CameraProvider 对象,并将其与生命周期绑定:

kotlin 复制代码
	private fun bindAnalysis(cameraProvider: ProcessCameraProvider?) {
        if (cameraProvider == null) {
            return
        }

        /**
         * 图片分析:得到摄像头图像数据
         * STRATEGY_KEEP_ONLY_LATEST:非阻塞模式,每次获得最新帧
         * STRATEGY_BLOCK_PRODUCER:阻塞模式,会得到每一张图片,处理不及时会导致帧率降低
         */
        val imageAnalysis = ImageAnalysis.Builder()
            // CameraX 会根据传入尺寸选择最佳的预览尺寸
            .setTargetResolution(Size(640, 480))
            .setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST)
            .build()

        // 设置分析器,指定回调所发生的线程(池)
        imageAnalysis.setAnalyzer(ContextCompat.getMainExecutor(this), this)

        // 绑定生命周期
        cameraProvider.unbindAll()
        cameraProvider.bindToLifecycle(this, CameraSelector.DEFAULT_FRONT_CAMERA, imageAnalysis)
    }

FaceTracker

FaceTracker 是上层与 Native 交互的类:

kotlin 复制代码
class FaceTracker(modelPath: String) {

    // 实际上是将上层的 FaceTracker 与 Native 的 FaceTracker 绑定
    // 上层以 Native 对象地址的形式持有 Native 对象,这样做的目的是
    // 让上层持有 C++ 对象,当上层将地址传回给 Native 层时,C++ 可以
    // 将地址强转回成一个 C++ 对象并操作该对象,这样能实现多对多的绑定
    private var mFaceTracker = 0L

    init {
        mFaceTracker = nativeInit(modelPath)
    }

    fun setSurface(surface: Surface?) {
        nativeSetSurface(mFaceTracker, surface)
    }

    fun detect(bytes: ByteArray, width: Int, height: Int, rotationDegrees: Int) {
        nativeDetect(mFaceTracker, bytes, width, height, rotationDegrees)
    }

    fun start() {
        nativeStart(mFaceTracker)
    }

    fun stop() {
        nativeStop(mFaceTracker)
    }

    fun release() {
        nativeRelease(mFaceTracker)
        mFaceTracker = 0
    }

    private external fun nativeInit(modelPath: String): Long

    private external fun nativeSetSurface(faceTracker: Long, surface: Surface?)

    private external fun nativeDetect(
        faceTracker: Long,
        bytes: ByteArray,
        width: Int,
        height: Int,
        rotationDegrees: Int
    )

    private external fun nativeStart(faceTracker: Long)

    private external fun nativeStop(faceTracker: Long)

    private external fun nativeRelease(faceTracker: Long)
}

nativeInit() 就是创建一个 Native 的 FaceTracker 对象,然后将该对象的地址返回给上层:

cpp 复制代码
extern "C"
JNIEXPORT jlong JNICALL
Java_com_face_recognition_FaceTracker_nativeInit(JNIEnv *env, jobject thiz, jstring model_path) {

    const char *path = env->GetStringUTFChars(model_path, 0);

    // 初始化FaceTracker对象
    auto *tracker = new FaceTracker(path);

    env->ReleaseStringUTFChars(model_path, path);

    return (jlong) tracker;
}

此外,在布局中的 SurfaceView 的 SurfaceHolder 添加 SurfaceHolder.Callback 的回调方法中,需要通过 FaceTracker 将 Surface 传给 Native 层:

kotlin 复制代码
	// SurfaceHolder.Callback start
    override fun surfaceCreated(holder: SurfaceHolder) {
    }

    override fun surfaceChanged(holder: SurfaceHolder, format: Int, width: Int, height: Int) {
        mFaceTracker.setSurface(holder.surface)
    }

    override fun surfaceDestroyed(holder: SurfaceHolder) {
        mFaceTracker.setSurface(null)
    }
    // SurfaceHolder.Callback end

nativeSetSurface() 会通过上层传来的 Surface 创建 Native 层的 ANativeWindow 对象:

cpp 复制代码
extern "C"
JNIEXPORT void JNICALL
Java_com_face_recognition_FaceTracker_nativeSetSurface(JNIEnv *env, jobject thiz,
                                                       jlong face_tracker, jobject surface) {

    if (face_tracker != 0) {
        auto *tracker = reinterpret_cast<FaceTracker *>(face_tracker);
        if (window) {
            ANativeWindow_release(window);
            window = nullptr;
        }
        window = ANativeWindow_fromSurface(env, surface);
        tracker->setNativeWindow(window);
    }
}

2.2 人脸识别

初始化 CameraX 时在 bindAnalysis() 中设置了分析器:

kotlin 复制代码
		// 设置分析器,指定回调所发生的线程(池)
        imageAnalysis.setAnalyzer(ContextCompat.getMainExecutor(this), this)

第二个参数是 ImageAnalysis.Analyzer 接口,我们在 Activity 中实现它,接收摄像头采集到的数据:

kotlin 复制代码
	// ImageAnalysis.Analyzer
    override fun analyze(image: ImageProxy) {
        val bytes = Utils.getDataFromImage(image)
        mFaceTracker.detect(bytes, image.width, image.height, image.imageInfo.rotationDegrees)
        image.close()
    }

先从 ImageProxy 中提取出图像数据的 Byte 数组:

kotlin 复制代码
		fun getDataFromImage(image: ImageProxy): ByteArray {
            // 1.获取图像的宽高以及格式,计算出图片大小字节数
            val rect = image.cropRect
            val imageWidth = rect.width()
            val imageHeight = rect.height()
            val format = image.format
            val size = imageWidth * imageHeight * ImageFormat.getBitsPerPixel(format) / 8

            // 2.为 data 和 rowData 分配内存
            val data = ByteArray(size)

            // planes 是一个数组,每个元素是一个 ImageProxy.Plane 对象,
            // Y、U、V 每种像素对应一个平面,分别是 planes[0]、planes[1]、
            // planes[2],每个 Plane 包含该平面图像数据的 ByteBuffer 对象
            val planes = image.planes
            val rowData = ByteArray(planes[0].rowStride)

            // 3.将 image 图像数据拷贝到 data 中,拷贝时按照 Y、U、V
            // 三个平面分开拷贝
            var channelOffset: Int
            for (i in planes.indices) {
                channelOffset = when (i) {
                    // y 从 0 开始
                    0 -> 0
                    // u 从 y 之后开始
                    1 -> imageWidth * imageHeight
                    // v 从 u 之后开始,u 的数据长度为 width * height / 4
                    2 -> (imageWidth * imageHeight * 1.25).toInt()
                    else -> throw IllegalArgumentException("Unexpected number of image planes")
                }

                // 这一个平面的数据缓冲区
                val buffer = planes[i].buffer
                // 行跨度,一行的步长,即这一行有像素数据所占用的字节数
                val rowStride = planes[i].rowStride
                // 像素跨度,即每一个像素占用的字节数,例如 RGB 就为 3
                val pixelStride = planes[i].pixelStride

                // UV 只有一半,因此要右移 1 位
                val shift = if (i == 0) 0 else 1
                val width = imageWidth shr shift
                val height = imageHeight shr shift

                // 移动到每个平面在 buffer 中的起始位置,准备读取该平面的数据
                buffer.position(rowStride * (rect.top shr shift) + pixelStride * (rect.left shr shift))

                var length: Int
                for (row in 0 until height) {
                    if (pixelStride == 1) {
                        length = width
                        buffer.get(data, channelOffset, length)
                        channelOffset += length
                    } else {
                        length = (width - 1) * pixelStride + 1
                        buffer.get(rowData, 0, length)
                        for (col in 0 until width) {
                            data[channelOffset++] = rowData[col * pixelStride]
                        }
                    }
                    if (row < height - 1) {
                        buffer.position(buffer.position() + rowStride - length)
                    }
                }
            }
            return data
        }

然后将像素数据、图片宽高和旋转角度通过 FaceTracker 传递到 Native 层进行人脸检测:

kotlin 复制代码
	fun detect(bytes: ByteArray, width: Int, height: Int, rotationDegrees: Int) {
        nativeDetect(mFaceTracker, bytes, width, height, rotationDegrees)
    }

	private external fun nativeDetect(
        faceTracker: Long,
        bytes: ByteArray,
        width: Int,
        height: Int,
        rotationDegrees: Int
    )

来到 Native 层,将检测请求转发给 FaceTracker:

cpp 复制代码
extern "C"
JNIEXPORT void JNICALL
Java_com_face_recognition_FaceTracker_nativeDetect(JNIEnv *env, jobject thiz, jlong face_tracker,
                                                   jbyteArray bytes, jint width, jint height,
                                                   jint rotation_degrees) {
    if (face_tracker != 0) {
        jbyte *data = env->GetByteArrayElements(bytes, nullptr);
        auto *tracker = (FaceTracker *) face_tracker;
        // 声明时将 detect() 的 data 的 jbyte 改为 int8_t,两个类型是一回事但是 cpp 中最好不要用 JNI 类型
        tracker->detect(data, width, height, rotation_degrees);
        env->ReleaseByteArrayElements(bytes, data, 0);
    }
}

FaceTracker 收到图像数据后,先创建 OpenCV 的图像对象 Mat,将其转换成 RGBA 格式再旋转为正向,然后开始灰度化、直方图等人脸识别过程:

cpp 复制代码
void FaceTracker::detect(int8_t *data, int width, int height, int rotation_degrees) {
    // src 接收的是 YUV I420 的数据,因此高度应该是 height 的 1.5 倍
    Mat src(height * 3 / 2, width, CV_8UC1, data);
    // 将 YUV I420 格式的 src 转换为 RGBA 格式
    cvtColor(src, src, COLOR_YUV2RGBA_I420);
    // 调整图像,将其旋转为正向
    if (rotation_degrees == 90) {
        rotate(src, src, ROTATE_90_CLOCKWISE);
    } else if (rotation_degrees == 270) {
        rotate(src, src, ROTATE_90_COUNTERCLOCKWISE);
        // 水平翻转
        flip(src, src, 1);
    }

    // 灰度化、增强对比度
    Mat gray;
    cvtColor(src, gray, COLOR_RGBA2GRAY);
    equalizeHist(gray, gray);

    // 检测
    tracker->process(gray);

    // 获取检测结果
    std::vector<Rect> faces;
    tracker->getObjects(faces);

    // 画矩形
    for (const Rect &face: faces) {
        rectangle(src, face, Scalar(0, 255, 0));
    }

    // 绘制 src
    draw(src);

    // 释放
    src.release();
    gray.release();
}

最后在 draw() 中将画了矩形人脸框的 Mat 对象绘制到 ANativeWindow 上:

cpp 复制代码
void FaceTracker::draw(const Mat &img) {
    pthread_mutex_lock(&mutex);

    // do-while(false) 是为了进行流程控制,在不满足条件时直接退出
    // 循环执行解锁操作,否则需要写多次解锁代码
    do {
        if (!window) {
            break;
        }

        // 设置 Window Buffer 的格式与大小
        ANativeWindow_setBuffersGeometry(window, img.cols, img.rows, WINDOW_FORMAT_RGBA_8888);
        ANativeWindow_Buffer buffer;

        // 上锁,目的是为了拿到 buffer
        if (ANativeWindow_lock(window, &buffer, nullptr)) {
            ANativeWindow_release(window);
            window = nullptr;
            break;
        }

        // 获取 buffer 保存实际数据的地址以及步长
        auto dstData = static_cast<uint8_t *>(buffer.bits);
        int dstLineSize = buffer.stride * 4;

        // 获取图片数据的起始地址与步长
        uint8_t *srcData = img.data;
        int srcLineSize = img.cols * 4;

        // 逐行拷贝图像数据到 buffer.bits
        for (int i = 0; i < buffer.height; ++i) {
            memcpy(dstData + i * dstLineSize, srcData + i * srcLineSize, srcLineSize);
        }

        ANativeWindow_unlockAndPost(window);
    } while (false);

    pthread_mutex_unlock(&mutex);
}

至此,Android 实现人脸识别的两个例子讲解完毕。

参考资料:

CameraX 的版本历史使用指南代码示例

相关推荐
martian6651 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长7 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME8 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室8 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself8 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot