配置及使用OpenCV(Python)

python配置OpenCV相对于c++的配置方法容易的多,但建议在Anaconda中的Python虚拟环境中使用,这样更方便进行包管理和环境管理:

先激活Anaconda的python虚拟环境:

bash 复制代码
conda activate GGBoy

随后下载 opencv 包:

bash 复制代码
conda install opencv

下载完成后在python终端导入 cv2 测试下是否下载成功

bash 复制代码
(GGBoy) C:\Users\114514>python
Python 3.6.13 |Anaconda, Inc.| (default, Mar 16 2021, 11:37:27) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>>

使用Opencv显示图像:

python 复制代码
import cv2
import sys

if len(sys.argv) > 1:  
    image = cv2.imread(sys.argv[1], cv2.IMREAD_UNCHANGED)  
    if image is None:  
        print(f"未能读取图像文件: {sys.argv[1]}")  
        sys.exit(1)  
else:  
    print("请提供图像文件路径作为命令行参数。")  
    sys.exit(1)  
  
cv2.imshow("image", image)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

随后在虚拟环境中运行此文件:

在运行命令后要加上图像的存放路径

bash 复制代码
(GGBoy) C:\Users\114514>cd C:\Users\114514\Desktop

(GGBoy) C:\Users\114514\Desktop>python cv36.py C:\Users\114514\Desktop\GGBoy.jpg

显示图像

使用Opencv将图片数字化:

python 复制代码
import cv2  
import numpy as np  
   
image_path = 'C:\\Users\\114514\\Desktop\\GGBoy.jpg' 
image = cv2.imread(image_path)  
  
if image is None:  
    print(f"无法读取图片: {image_path}")  
else:   
    print(f"图片形状: {image.shape}")  
    print(f"图片数据类型: {image.dtype}")  
      
    # 通过numpy数组来访问和操作这些数字化数据  
    digitized_image = np.array(image)  
      
    # 打印数字化矩阵的一部分(左上角的10x10像素)  
    print(digitized_image[:10, :10])

彩色图片转换为灰度图片:

python 复制代码
import cv2  
  
image_path = 'C:\\Users\\114514\\Desktop\\ggboy.jpg'
color_image = cv2.imread(image_path)  
  
if color_image is None:  
    print(f"未能读取图片: {image_path}")  
else:  
    gray_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)  
  
    cv2.imshow('GGBoy Image', gray_image)  
    cv2.waitKey(0)  
    cv2.destroyAllWindows()  
  
    gray_image_path = 'C:\\Users\\114514\\Desktop\\ggboy2.jpg'  
    cv2.imwrite(gray_image_path, gray_image)
相关推荐
码银4 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春8 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll16 分钟前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋1381027972016 分钟前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
在下不上天17 分钟前
Flume日志采集系统的部署,实现flume负载均衡,flume故障恢复
大数据·开发语言·python
SEVEN-YEARS20 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人23 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
EterNity_TiMe_25 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
cloud studio AI应用30 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
Suyuoa36 分钟前
附录2-pytorch yolov5目标检测
python·深度学习·yolo