Spark Stream

一、Spark Streaming是什么

Spark Streaming 用于流式数据的处理。Spark Streaming 支持的数据输入源很多,例如:Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等等。数据输入后可以用 Spark 的高度抽象原语如:map、reduce、join、window 等进行运算。而结果也能保存在很多地方,如 HDFS,数据库等

Spark Streaming 是 Spark Core 的扩展,它支持高吞吐量、可容错的实时数据流处理。在 Spark Streaming 中,数据被切分为一系列连续的批处理,每个批处理被当作一个 RDD。

二、Spark Streaming的特点

1.易用、2.容错、3.易整合到Spark体系

三、Spark Streaming 常用的 API

  1. StreamingContext: 这是 Spark Streaming 的主要入口点,用于创建和配置流式计算。

    scala 复制代码
  2. textFileStream(directory): 从指定目录中读取新文件作为数据源。

    scala 复制代码
  3. queueStream(rddQueue): 从给定的RDD队列中获取数据。

    scala 复制代码
  4. socketTextStream(hostname, port): 从指定主机名和端口上的TCP套接字接收数据。

    scala 复制代码
  5. receiverStream(blockReceiver): 使用自定义的BlockReceiver来接收数据。

    scala 复制代码
  6. fileStream(directory): 监视指定目录下的新文件,与textFileStream类似,但可以设置检查间隔和滚动时间间隔。

    scala 复制代码
  7. foreachRDD(func): 对每个RDD执行操作,通常用于将数据写入外部系统或进行复杂的批处理操作。

    scala 复制代码
  8. count(): 返回每个批次中的元素数量。

    scala 复制代码
  9. reduce(func): 使用给定的函数将所有元素聚合成一个值。

    scala 复制代码
  10. collect(): 将数据收集到驱动程序节点上。

    scala 复制代码
  11. updateStateByKey(func): 根据键值更新状态。

    scala 复制代码
  12. mapWithState(func): 使用给定的函数和状态映射RDD。

    scala 复制代码
  13. window(windowLength, slideInterval): 创建一个滑动窗口。

    scala 复制代码
  14. reduceByWindow(func, windowLength, slideInterval): 在给定的窗口长度和滑动间隔内进行归约操作。

    scala 复制代码
  15. transform(rddFunc, outputMode): 使用给定的RDD函数转换输入RDD。

    scala 复制代码
  16. union(otherStream): 合并两个DStream。

    scala 复制代码
  17. intersection(otherStream): 计算两个DStream的交集。

    scala 复制代码
  18. subtract(otherStream): 计算两个DStream的差集。

    scala 复制代码
  19. join(otherStream): 连接两个DStream。

    scala 复制代码
  20. filter(func): 过滤DStream中的元素。

    scala 复制代码
  21. flatMap(func): 扁平化DStream中的元素。

    scala 复制代码
  22. map(func): 映射DStream中的元素。

    scala 复制代码
  23. foreachRDD(func): 对每个RDD执行操作,但不返回结果。

    scala 复制代码
  24. start(): 启动流式计算。

    scala 复制代码
  25. awaitTermination(): 等待流式计算终止。

    scala 复制代码

这些 API 提供了强大的功能,使 Spark Streaming 能够处理各种实时数据流任务。

相关推荐
芯盾时代12 分钟前
CIPS系统迎来重大升级
大数据·人工智能·跨境支付·芯盾时代
ManageEngineITSM13 分钟前
重构可见性:IT资产管理的下一次觉醒
大数据·人工智能·重构·自动化·itsm·工单系统
计算机编程-吉哥1 小时前
大数据毕业设计项目推荐 基于大数据的广西药店数据可视化分析系统 1.65w条数据【大数据毕业设计项目选题】
大数据·hadoop·毕业设计·计算机毕设·大数据毕业设计选题推荐
门框研究员1 小时前
一次实时采集任务延迟问题的完整复盘(Flink CDC)
大数据·flink
艾莉丝努力练剑1 小时前
【C++:map和set的使用】C++ map/multimap完全指南:从红黑树原理入门到高频算法实战
大数据·开发语言·c++·人工智能·stl·map
汤姆yu1 小时前
基于大数据的全国降水可视化分析预测系统
大数据·开发语言·python
ManageEngineITSM7 小时前
技术的秩序:IT资产与配置管理的现代重构
大数据·运维·数据库·重构·工单系统
一周困⁸天.9 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署【7.1.1版本】
大数据·elk·elasticsearch·jenkins
档案宝档案管理9 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
workflower10 小时前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发