Pycharm链接远程服务器GPU跑深度学习模型

我们在学习深度学习时,常常会遇到自己笔记本电脑性能不够,显卡性能低,在运行深度学习项目的时候很浪费时间。如果实验室有可用于深度学习的服务器的话,会大大减少代码执行时间,服务器上的GPU算力一般都很高。

本文主要介绍如何使用本地电脑Pycharm 远程连接服务器,进行深度学习,调用GPU。

一、服务器端

服务器:服务器并不是什么高大尚的东西,他也就是一台Linux系统的电脑,一般都装有Ubuntu系统。推荐学习一些简单的Linux命令。

使用服务器前,确保服务器是开着的,如果需要往服务器上下载东西,比如安装Python包等,需要确保服务器已经联网,否则安装环境包时会出错,无法访问地址。

二、本地Pycharm设置

将项目代码链接到服务器

在Pycharm中打开深度学习项目代码,点击上方工具栏Tools→Deployment→Configureation.

点击+,选择SFTP,输入服务器名称(随意),点击OK,就创建好了

点击SSH configuration右侧 ... 进行服务器参数配置

点击加号,在右侧填写远程服务器的HOST IP地址,User name ,password,填写完毕后点击Test connection,弹出连接成功即可,表明连接到远程服务器了。点击Apply

然后继续在Deployment中进行其他参数配置,点击Mapping→Deployment path,在此选择服务器上的项目代码路径。(注意:推荐提前将本地代码及数据上传到服务器中,记住路径位置),选择完毕后点击Ok。

注:使用远程服务器运行代码时,服务器上一定要有项目代码、数据,只在自己电脑本地有是不行的。服务器只能读取服务器上的文件。我们只是 借用自己电脑Pycharm 以可视化的形式 操作服务器上的文件数据。

配置完成后,记得勾选Automatic upload,这样你在pycharm中修改代码时,远程服务器上的代码文件也会同步被修改。

配置解释器运行环境

上述已经将本地代码和远程服务器建立连接了,接下来配置解释器运行环境。

点击右下角,选择Interpreter settings。

点击Add 添加新环境

选择 SSH Interpreter,找到刚才创建好的SSH链接,并选择。如有提示,点击Move即可。

点击next,在此处进行环境配置。 Interpreter选择服务器上的环境路径。

Sync folders选择服务器上的项目代码路径。

选择完点击OK,Finish

点击Apply即可

点击右侧Remote Host即可看到远程服务器的文件。至此就配置链接原创服务器完成。

至此,代码就能成功在服务器中执行了,并且调用服务器的GPU算力。

相关推荐
忧郁的橙子.20 分钟前
三、k8s 1.29 之 安装2
linux·运维·服务器
盼小辉丶27 分钟前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
huangyuchi.1 小时前
【Linux系统】动静态库的制作
linux·运维·服务器·动态库·静态库·库的简单制作
闻不多1 小时前
用llamaindex搭建GAR遇到400
android·运维·服务器
jim写博客1 小时前
Linux进程概念(四)环境地址变量
linux·运维·服务器
Tiger Z2 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
189228048613 小时前
NY270NY273美光固态闪存NY277NY287
服务器·网络·数据库·科技·性能优化
你好,赵志伟4 小时前
Socket 编程 TCP
linux·服务器·tcp/ip
Liang_GaRy5 小时前
心路历程-三个了解敲开linux的大门
linux·运维·服务器
玩转以太网12 小时前
基于W55MH32Q-EVB 实现 HTTP 服务器配置 OLED 滚动显示信息
服务器·网络协议·http