Pycharm链接远程服务器GPU跑深度学习模型

我们在学习深度学习时,常常会遇到自己笔记本电脑性能不够,显卡性能低,在运行深度学习项目的时候很浪费时间。如果实验室有可用于深度学习的服务器的话,会大大减少代码执行时间,服务器上的GPU算力一般都很高。

本文主要介绍如何使用本地电脑Pycharm 远程连接服务器,进行深度学习,调用GPU。

一、服务器端

服务器:服务器并不是什么高大尚的东西,他也就是一台Linux系统的电脑,一般都装有Ubuntu系统。推荐学习一些简单的Linux命令。

使用服务器前,确保服务器是开着的,如果需要往服务器上下载东西,比如安装Python包等,需要确保服务器已经联网,否则安装环境包时会出错,无法访问地址。

二、本地Pycharm设置

将项目代码链接到服务器

在Pycharm中打开深度学习项目代码,点击上方工具栏Tools→Deployment→Configureation.

点击+,选择SFTP,输入服务器名称(随意),点击OK,就创建好了

点击SSH configuration右侧 ... 进行服务器参数配置

点击加号,在右侧填写远程服务器的HOST IP地址,User name ,password,填写完毕后点击Test connection,弹出连接成功即可,表明连接到远程服务器了。点击Apply

然后继续在Deployment中进行其他参数配置,点击Mapping→Deployment path,在此选择服务器上的项目代码路径。(注意:推荐提前将本地代码及数据上传到服务器中,记住路径位置),选择完毕后点击Ok。

注:使用远程服务器运行代码时,服务器上一定要有项目代码、数据,只在自己电脑本地有是不行的。服务器只能读取服务器上的文件。我们只是 借用自己电脑Pycharm 以可视化的形式 操作服务器上的文件数据。

配置完成后,记得勾选Automatic upload,这样你在pycharm中修改代码时,远程服务器上的代码文件也会同步被修改。

配置解释器运行环境

上述已经将本地代码和远程服务器建立连接了,接下来配置解释器运行环境。

点击右下角,选择Interpreter settings。

点击Add 添加新环境

选择 SSH Interpreter,找到刚才创建好的SSH链接,并选择。如有提示,点击Move即可。

点击next,在此处进行环境配置。 Interpreter选择服务器上的环境路径。

Sync folders选择服务器上的项目代码路径。

选择完点击OK,Finish

点击Apply即可

点击右侧Remote Host即可看到远程服务器的文件。至此就配置链接原创服务器完成。

至此,代码就能成功在服务器中执行了,并且调用服务器的GPU算力。

相关推荐
Tim风声(网络工程师)1 小时前
不同射频对应不同mac地址(查找无线用户连接AP信息)
服务器·网络·tcp/ip·智能路由器·无线ap
大写-凌祁2 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
wan5555cn3 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威4 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
鳄鱼杆5 小时前
服务器 | Docker应用开发与部署的实践以及阿里云镜像加速配置
服务器·阿里云·docker
羚羊角uou5 小时前
【Linux】命名管道
linux·运维·服务器
THMAIL5 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
xcnn_5 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
曾经的三心草6 小时前
Python2-工具安装使用-anaconda-jupyter-PyCharm-Matplotlib
android·java·服务器
attitude.x6 小时前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习