Fourier 测试时间自适应与多级一致性用于鲁棒分类

文章目录

  • [Fourier Test-Time Adaptation with Multi-level Consistency for Robust Classification](#Fourier Test-Time Adaptation with Multi-level Consistency for Robust Classification)

Fourier Test-Time Adaptation with Multi-level Consistency for Robust Classification

摘要

该研究提出了一种名为 Fourier 测试时间适应(FTTA)的新方法,以应对不同中心、供应商和协议产生的领域偏移。FTTA 采用双适应设计,将输入和模型调整相结合,从而共同提高模型的鲁棒性。FTTA 的主要思想是建立一种可靠的配对输入的多级一致性度量,以实现对预测的自我校正。

其贡献有两个方面:一是在同一输入的两个转换图像之间鼓励全局特征和局部注意力图的一致性。这里,转换指的是基于 Fourier 的输入适应,可以将一个未见图像转换为源风格以减少域差异。此外利用样式插值图像增强全局和局部特征,具有可学习参数,可以平滑一致性度量并加速收敛。

方法

Fig. 1. 从左到右:1)来自 A 和 B 供应商的心脏四腔视图,2)来自 C 和 D 供应商的腹部平面,3)来自 E-G 中心的糖尿病视网膜病变 3 级的底片图像。每个组中都可以看到外观和分布差异

Fig. 2. 两个具有不同风格的图像之间振幅交换的示意图。右下角显示的伪彩色图像显示了振幅交换前后图像之间的差异。

当给定经过训练的分类器 G G G 时,FTTA的流程如下:

  1. 对于每个未见过的测试图像 x t x_t xt,首先进行傅里叶变换输入适应,将其转换为两个类似源样本的图像 x t 1 x_{t1} xt1和 x t 2 x_{t2} xt2。
  2. 然后,利用线性样式插值,生成两组图像,用于后续的全局特征平滑一致性测量 L f L_f Lf和局部视觉注意力 L c L_c Lc。
  3. 在频率空间中,根据样式插值一致性计算逻辑空间中的正则化 L s L_s Ls。
  4. 最后,基于多一致性损失进行一次更新,输出最终的平均预测。

实验结果




相关推荐
还是转转32 分钟前
AI Code Review 工具
人工智能·代码复审
艾莉丝努力练剑32 分钟前
【Git:多人协作】Git多人协作实战:从同分支到多分支工作流
服务器·c++·人工智能·git·gitee·centos·项目管理
拓端研究室3 小时前
专题:2025AI产业全景洞察报告:企业应用、技术突破与市场机遇|附920+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
lumi.4 小时前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
m0_650108245 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹6 小时前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
AKAMAI8 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽8 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg50178 小时前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z8 小时前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能