分类任务的基础学习

1.什么是分类?


2.局限性:

样本量逐渐变大 的时候,准确率会下降 ------>因为线性回归曲线距离我们的原点越远 ,预测就会开始不准确,因为 x前面的倍数就会越来越小 ,这就导致了样本量变大 ,但是那些原来靠近原点的点的结果就会可能发生改变;

3.逻辑回归模型

**和线性回归的区别就是:**方程不一样。

**效果:**能够很好地拟合数据,完成分类任务。
目的:根据数据特征和属性,计算归属于某一类别的概率P(x),根据其概率数值判断其所属类别(应用场景为二分类问题)

3.1数学表达式:

4. 逻辑回归处理分类任务:

将x=-10和x=100带入P(x)sigmod 方程,根据是否大于0.5进行具体判断

5.多因子情况的分类任务考虑:

分类任务 需要考虑两个最重要的大点,第一点是概率分布函数,第二点是g(x)这个关系函数

5.1复杂分类任务的求解:

1.首先明确最小损失函数:

我们首先不再使用线性回归方程的损失函数,因为它需要连续的方程而非离散的点,故求不出极小值点,也就是求不出参数

2.整体样本的损失函数J如下所示:

min(J(θ))

而寻找θ等参数的极值本质还是梯度下降法:
本质:pi+1=pi-αf(pi)对pi求导
迁移:tempθj=θj-α
J(θj)对θj求导

6.区分类散点图:

7.如何利用sklearn得到二分类的边界函数

LogisticRegression:(逻辑回归模型)

7.1如何优化边界函数得到更加优秀的结果:
7.2评估模型的表现:

正确样本数量/总样本数量

相关推荐
Zzz 小生6 小时前
LangChain models:模型使用完全指南
人工智能·深度学习·机器学习
Christo38 小时前
windows系统配置openclaw
人工智能·机器学习
小李独爱秋8 小时前
机器学习与深度学习实验项目3 卷积神经网络实现图片分类
人工智能·深度学习·机器学习·分类·cnn·mindspore·模式识别
audyxiao0019 小时前
AI一周重要会议和活动概览(2.16-2.22)
人工智能·机器学习·一周会议与活动
龙山云仓10 小时前
No156:AI中国故事-对话司马迁——史家绝唱与AI记忆:时间叙事与因果之链
大数据·开发语言·人工智能·python·机器学习
HyperAI超神经11 小时前
视觉真实之外:清华WorldArena全新评测体系揭示具身世界模型的能力鸿沟
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人
MoonOutCloudBack13 小时前
VeRL 框架 RL 微调大语言模型,algorithm.use_pf_ppo 参数详解
人工智能·机器学习·语言模型·自然语言处理
Project_Observer13 小时前
项目管理中如何跟踪工时?
数据库·深度学习·机器学习
geneculture14 小时前
智慧系统工程实践:从人机互助至人机协同
大数据·人工智能·机器学习·知识图谱·融智学的重要应用·哲学与科学统一性·融智时代(杂志)
智能交通技术14 小时前
iTSTech:从AGI到AMI——自动驾驶的新方向 2026
人工智能·机器学习·自动驾驶·agi