分类任务的基础学习

1.什么是分类?


2.局限性:

样本量逐渐变大 的时候,准确率会下降 ------>因为线性回归曲线距离我们的原点越远 ,预测就会开始不准确,因为 x前面的倍数就会越来越小 ,这就导致了样本量变大 ,但是那些原来靠近原点的点的结果就会可能发生改变;

3.逻辑回归模型

**和线性回归的区别就是:**方程不一样。

**效果:**能够很好地拟合数据,完成分类任务。
目的:根据数据特征和属性,计算归属于某一类别的概率P(x),根据其概率数值判断其所属类别(应用场景为二分类问题)

3.1数学表达式:

4. 逻辑回归处理分类任务:

将x=-10和x=100带入P(x)sigmod 方程,根据是否大于0.5进行具体判断

5.多因子情况的分类任务考虑:

分类任务 需要考虑两个最重要的大点,第一点是概率分布函数,第二点是g(x)这个关系函数

5.1复杂分类任务的求解:

1.首先明确最小损失函数:

我们首先不再使用线性回归方程的损失函数,因为它需要连续的方程而非离散的点,故求不出极小值点,也就是求不出参数

2.整体样本的损失函数J如下所示:

min(J(θ))

而寻找θ等参数的极值本质还是梯度下降法:
本质:pi+1=pi-αf(pi)对pi求导
迁移:tempθj=θj-α
J(θj)对θj求导

6.区分类散点图:

7.如何利用sklearn得到二分类的边界函数

LogisticRegression:(逻辑回归模型)

7.1如何优化边界函数得到更加优秀的结果:
7.2评估模型的表现:

正确样本数量/总样本数量

相关推荐
大模型最新论文速读1 小时前
NAtS-L: 自适应融合多种注意力架构,推理能力提高 36%
人工智能·深度学习·机器学习·语言模型·自然语言处理
YunchengLi3 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
上海合宙LuatOS5 小时前
LuatOS核心库API——【fft 】 快速傅里叶变换
java·前端·人工智能·单片机·嵌入式硬件·物联网·机器学习
硬汉嵌入式5 小时前
CMSIS全家桶再增加个机器学习参考应用与模板软件包CMSIS-MLEK
人工智能·机器学习
JXL18606 小时前
Convolutional Neural Networks
人工智能·深度学习·机器学习
GEO-optimize6 小时前
2026北京GEO服务商评审指南:核心实力与适配指南
大数据·人工智能·机器学习·geo
Eloudy6 小时前
SuiteSparse 的 README
人工智能·算法·机器学习·hpc
励ℳ7 小时前
机器学习-LASSO算法指南
人工智能·算法·机器学习
诸葛务农9 小时前
点云配准在人形机器人中的应用:ICP算法(2)
人工智能·算法·机器学习·机器人
龙山云仓9 小时前
No152:AI中国故事-对话祖冲之——圆周率与AI精度:数学直觉与极限探索
大数据·开发语言·人工智能·python·机器学习