分类任务的基础学习

1.什么是分类?


2.局限性:

样本量逐渐变大 的时候,准确率会下降 ------>因为线性回归曲线距离我们的原点越远 ,预测就会开始不准确,因为 x前面的倍数就会越来越小 ,这就导致了样本量变大 ,但是那些原来靠近原点的点的结果就会可能发生改变;

3.逻辑回归模型

**和线性回归的区别就是:**方程不一样。

**效果:**能够很好地拟合数据,完成分类任务。
目的:根据数据特征和属性,计算归属于某一类别的概率P(x),根据其概率数值判断其所属类别(应用场景为二分类问题)

3.1数学表达式:

4. 逻辑回归处理分类任务:

将x=-10和x=100带入P(x)sigmod 方程,根据是否大于0.5进行具体判断

5.多因子情况的分类任务考虑:

分类任务 需要考虑两个最重要的大点,第一点是概率分布函数,第二点是g(x)这个关系函数

5.1复杂分类任务的求解:

1.首先明确最小损失函数:

我们首先不再使用线性回归方程的损失函数,因为它需要连续的方程而非离散的点,故求不出极小值点,也就是求不出参数

2.整体样本的损失函数J如下所示:

min(J(θ))

而寻找θ等参数的极值本质还是梯度下降法:
本质:pi+1=pi-αf(pi)对pi求导
迁移:tempθj=θj-α
J(θj)对θj求导

6.区分类散点图:

7.如何利用sklearn得到二分类的边界函数

LogisticRegression:(逻辑回归模型)

7.1如何优化边界函数得到更加优秀的结果:
7.2评估模型的表现:

正确样本数量/总样本数量

相关推荐
EterNity_TiMe_24 分钟前
【人工智能】deepseek R1模型在蓝耘智算平台的搭建与机器学习的探索
人工智能·python·机器学习·deepseek
珠江上上上1 小时前
支持向量机原理
人工智能·深度学习·算法·机器学习·支持向量机·数据挖掘
珠江上上上1 小时前
支持向量机相关文献
算法·机器学习·支持向量机
金融OG3 小时前
100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
人工智能·python·算法·机器学习·支持向量机·数学建模·金融
FF-Studio3 小时前
读 DeepSeek-R1 论文笔记
论文阅读·人工智能·深度学习·机器学习·语言模型·自然语言处理·deepseek
liruiqiang054 小时前
机器学习 - 关于逻辑回归的若干问题
人工智能·机器学习·逻辑回归
GISer Liu5 小时前
使用DeepSeek构建Camel多智能体框架:基本环境配置
人工智能·python·机器学习·datawhale·camel·aiagent·deepseek
云天徽上5 小时前
【数据可视化-16】珍爱网上海注册者情况分析
人工智能·机器学习·信息可视化·数据挖掘·数据分析
光速科研5 小时前
DeepSeek临床科研从入门到高手
大数据·论文阅读·人工智能·经验分享·机器学习·ai写作
liruiqiang057 小时前
深入理解概率密度函数和概率的关系
机器学习·线性回归·概率论