分类任务的基础学习

1.什么是分类?


2.局限性:

样本量逐渐变大 的时候,准确率会下降 ------>因为线性回归曲线距离我们的原点越远 ,预测就会开始不准确,因为 x前面的倍数就会越来越小 ,这就导致了样本量变大 ,但是那些原来靠近原点的点的结果就会可能发生改变;

3.逻辑回归模型

**和线性回归的区别就是:**方程不一样。

**效果:**能够很好地拟合数据,完成分类任务。
目的:根据数据特征和属性,计算归属于某一类别的概率P(x),根据其概率数值判断其所属类别(应用场景为二分类问题)

3.1数学表达式:

4. 逻辑回归处理分类任务:

将x=-10和x=100带入P(x)sigmod 方程,根据是否大于0.5进行具体判断

5.多因子情况的分类任务考虑:

分类任务 需要考虑两个最重要的大点,第一点是概率分布函数,第二点是g(x)这个关系函数

5.1复杂分类任务的求解:

1.首先明确最小损失函数:

我们首先不再使用线性回归方程的损失函数,因为它需要连续的方程而非离散的点,故求不出极小值点,也就是求不出参数

2.整体样本的损失函数J如下所示:

min(J(θ))

而寻找θ等参数的极值本质还是梯度下降法:
本质:pi+1=pi-αf(pi)对pi求导
迁移:tempθj=θj-α
J(θj)对θj求导

6.区分类散点图:

7.如何利用sklearn得到二分类的边界函数

LogisticRegression:(逻辑回归模型)

7.1如何优化边界函数得到更加优秀的结果:
7.2评估模型的表现:

正确样本数量/总样本数量

相关推荐
Chef_Chen5 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
Master_oid8 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
ballball~~8 小时前
拉普拉斯金字塔
算法·机器学习
Cemtery1168 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习
weixin_4469340311 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉
wubba lubba dub dub75012 小时前
第三十三周 学习周报
学习·算法·机器学习
猫天意12 小时前
【深度学习小课堂】| torch | 升维打击还是原位拼接?深度解码 PyTorch 中 stack 与 cat 的几何奥义
开发语言·人工智能·pytorch·深度学习·神经网络·yolo·机器学习
cyyt12 小时前
深度学习周报(1.12~1.18)
人工智能·算法·机器学习
独自破碎E14 小时前
【回溯+剪枝】字符串的排列
算法·机器学习·剪枝
OJAC11114 小时前
当DeepSeek V4遇见近屿智能:一场AI进化的叙事正在展开
人工智能·深度学习·机器学习