分类任务的基础学习

1.什么是分类?


2.局限性:

样本量逐渐变大 的时候,准确率会下降 ------>因为线性回归曲线距离我们的原点越远 ,预测就会开始不准确,因为 x前面的倍数就会越来越小 ,这就导致了样本量变大 ,但是那些原来靠近原点的点的结果就会可能发生改变;

3.逻辑回归模型

**和线性回归的区别就是:**方程不一样。

**效果:**能够很好地拟合数据,完成分类任务。
目的:根据数据特征和属性,计算归属于某一类别的概率P(x),根据其概率数值判断其所属类别(应用场景为二分类问题)

3.1数学表达式:

4. 逻辑回归处理分类任务:

将x=-10和x=100带入P(x)sigmod 方程,根据是否大于0.5进行具体判断

5.多因子情况的分类任务考虑:

分类任务 需要考虑两个最重要的大点,第一点是概率分布函数,第二点是g(x)这个关系函数

5.1复杂分类任务的求解:

1.首先明确最小损失函数:

我们首先不再使用线性回归方程的损失函数,因为它需要连续的方程而非离散的点,故求不出极小值点,也就是求不出参数

2.整体样本的损失函数J如下所示:

min(J(θ))

而寻找θ等参数的极值本质还是梯度下降法:
本质:pi+1=pi-αf(pi)对pi求导
迁移:tempθj=θj-α
J(θj)对θj求导

6.区分类散点图:

7.如何利用sklearn得到二分类的边界函数

LogisticRegression:(逻辑回归模型)

7.1如何优化边界函数得到更加优秀的结果:
7.2评估模型的表现:

正确样本数量/总样本数量

相关推荐
H***99761 分钟前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
长桥夜波15 分钟前
机器学习日报20
人工智能·机器学习
Ma0407137 小时前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
周杰伦_Jay9 小时前
【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
人工智能·机器学习·架构·开源
yLDeveloper18 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
xier_ran1 天前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳20061 天前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
Salt_07281 天前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习
智能交通技术1 天前
iTSTech:自动驾驶技术综述报告 2025
人工智能·机器学习·自动驾驶
大佬,救命!!!1 天前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置