【机器学习】机器学习学习笔记 - 监督学习 - KNN线性回归岭回归 - 02

监督学习

KNN (k-nearest neighbors)

  • KNN 是用 k 个最近邻的训练数据集来寻找未知对象分类的一种算法

在线工具网 - 各类免费AI工具合集,免费pdf转word等 https://orcc.online

python 复制代码
from sklearn import neighbors

# 分类
# 创建KNN分类器模型并进行训练
classifier = neighbors.KNeighborsClassifier(num_neighbors, weights='distance')
classifier.fit(X, y)

test_datapoint = [4.5, 3.6]

# 提取KNN分类结果
dist, indices = classifier.kneighbors([test_datapoint])

# 回归
# 定义并训练回归器
knn_regressor = neighbors.KNeighborsRegressor(n_neighbors, weights='distance')
# 预测
y_values = knn_regressor.fit(X, y).predict(x_values)

线性回归

  • 优点: 简单、速度快
  • 缺点: 普通线性回归对异常值敏感,会破坏整个模型, 可以使用岭回归的方法优化
  • 缺点: 拟合准确度相对不高
  • 回归是估计输入数据与连续值输出数据之间关系的过程
  • 线性回归的目标是提取输入变量与输出变量的关联线性模型
  • 普通最小二乘法(Ordinary Least Squares,OLS): 要求实际输出与线性方程, 预测的输出的残差平方和(sum of squares of differences)最小化
python 复制代码
# -*- coding: UTF-8 -*-

import sys
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt

# 数据准备
X = [1,2,3,4,5,6,7,8,9,10]
y = [22,22,23,24,25,27,27,30,29,30]

# 取80%的样本作为训练数据
num_training = int(0.8 * len(X))
num_test = len(X) - num_training

# 训练数据 80% reshape:(行数,列数)
# 行数:样本数
# 列数:特征数
X_train = np.array(X[:num_training]).reshape((num_training,1))
y_train = np.array(y[:num_training])

# 测试数据 20%
X_test = np.array(X[num_training:]).reshape((num_test,1))
y_test = np.array(y[num_training:])

# 创建线性回归对象
linear_regressor = linear_model.LinearRegression()

# 用训练数据集训练模型
linear_regressor.fit(X_train, y_train)

# 用训练好的模型预测测试数据集
# 预测数据
y_test_pred = linear_regressor.predict(X_test)
print('测试数据集的预测结果:',y_test_pred)
# 创建一个空白的窗口
plt.figure()
# 画出训练数据 散点图 -- 测试数据实际值
plt.scatter(X_test, y_test, color='green')
# 画出预测数据 折线图
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.title('Training data')
plt.show()

岭回归

  • 岭回归是一种线性回归模型, 它通过对数据进行截距处理, 使得回归系数的绝对值不超过给定阈值
  • 岭回归的优点是可以减小过拟合的风险, 并且可以处理异常值
  • 岭回归的缺点是它对数据进行了截距处理
python 复制代码
# 创建龄回归对象
# alpha:正则化力度, 控制回归器复杂度,趋近于0就是常规最小二乘法, 对异常值不敏感就设置一个较大值
# alpha取值范围为0~1小数值、1~10整数值
# fit_intercept:是否使用截距
# max_iter:最大迭代次数
ridge_regressor = linear_model.Ridge(alpha=0.8, fit_intercept=True, max_iter=100)

IT免费在线工具网 https://orcc.online

相关推荐
PeterClerk10 分钟前
DeepSeek R1 训练策略4个阶段解析
人工智能·深度学习·机器学习·语言模型·自然语言处理·llm·deepseek
龚大龙1 小时前
机器学习(李宏毅)——Diffusion Model
人工智能·机器学习
风雅樱2 小时前
机器学习--(随机森林,线性回归)
随机森林·机器学习·线性回归
AOIWB2 小时前
机器分类的基石:逻辑回归Logistic Regression
机器学习·分类·数据挖掘·逻辑回归
dundunmm2 小时前
【数据挖掘】NumPy
人工智能·数据挖掘·numpy
我才是空菜2 小时前
教你通过腾讯云AI代码助手,免费使用满血版deepseek r1,还可以自定义知识库!
java·intellij-idea·ai编程·腾讯云ai代码助手
Felaim2 小时前
评估自动驾驶(AD)策略性能的关键指标
人工智能·机器学习·自动驾驶
@正在学习驰骋的小马3 小时前
在PyCharm中集成AI编程助手并嵌入本地部署的DeepSeek-R1模型:打造智能开发新体验
ide·pycharm·ai编程
人肉推土机4 小时前
大模型最新面试题系列:深度学习基础(一)
人工智能·pytorch·语言模型·面试·ai编程
蕴微轩5 小时前
DeepSeek R1 + 飞书机器人实现AI智能助手
人工智能·语言模型·机器人·飞书·ai编程