《Video Mamba Suite》论文笔记(2)Mamba对于多模态交互的作用

原文翻译

4.2 Mamba for Cross-Modal Interaction

**Tasks and datasets.**除了单模态任务外,我们还评估了 Mamba 在跨模态交互方面的性能。我们首先使用视频时间定位 (Video Temporal Grounding) 任务进行评估。所涉及的数据集包含 QvHighlight [44] 和 Charade-STA [28]。

**Baseline and competitor.**在这项工作中,我们使用 UniVTG [50] 来创建我们基于 mamba 的 VTG 模型。UniVTG采用变压器作为多模态交互网络。给定视频特征 V = {vi}i=1->Lv ∈ R^Lv ×D 和文本特征 Q = {qj }i=1->Lq ∈ R^Lq ×D ,我们首先将可学习的位置嵌入 Epos 和模态类型嵌入 Etype 添加到每个模态中以保留位置和模态信息:

然后,将文本和视频标记连接起来得到联合输入 Z = [ ̃V; ̃Q] ∈ R^L×D ,其中 L = Lv + Lq。此外,Z 被送入多模态变压器编码器。最后,取出文本增强的视频特征̃Ve,然后送入预测头。

为了创建跨模态 Mamba 竞争模型,我们堆叠双向 Mamba 块以形成多模态 Mamda 编码器来替换 Transformer 基线。

Results and analysis. 我们在表 6 中展示了多个模型在 Qvhighlight [44] 上的性能。 Mamba 实现了 44.74 的平均 mAP,与Transformer相比,代表了显着的改进(44.74 对 38.48)。对于 Charade-STA [28],基于 Mamba 的方法也实现了相当的性能。这表明 Mamba 有可能有效地整合多种模态。鉴于 Mamba [30] 是一个基于线性扫描的模型,而转换器基于全局令牌交互,直观地说,我们认为标记序列中文本的位置可能会影响多模态聚合的有效性。为了研究这一点,我们在表 7 中包含了不同的文本视觉融合方法,而图 3 说明了四种不同的标记排列。我们观察到,当文本条件在视觉特征的左侧融合时,可以获得最好的结果。Qvhighlight[44]受到这种融合的影响较小,而 Charade-STA [28] 对文本位置表现出特别的敏感性,这可能是由于数据集的特征。

**Results and analysis.**TimeMamba 和 TimeSformer [6] 的性能比较如表 8、表 9、表 10 和图 5 所示。

相关推荐
mmq在路上18 小时前
SLAM-Former: Putting SLAM into One Transformer论文阅读
论文阅读·深度学习·transformer
Vizio<1 天前
《基于 ERT 的稀疏电极机器人皮肤技术》ICRA2020论文解析
论文阅读·人工智能·学习·机器人·触觉传感器
张较瘦_1 天前
[论文阅读] AI+软件工程(需求工程)| 告别需求混乱!AI-native时代,需求工程的5大痛点与3大破局方向
论文阅读·人工智能·软件工程
张较瘦_2 天前
[论文阅读] 软件工程 | 量子计算即服务(QCaaS)落地难?软件工程视角的解决方案来了
论文阅读·软件工程·量子计算
byzy2 天前
【论文笔记】VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
论文阅读·深度学习·计算机视觉·自动驾驶
红苕稀饭6662 天前
Video-of-Thought论文阅读
论文阅读
张较瘦_3 天前
[论文阅读] AI+软件工程(迁移)| 从JDK8到21:FreshBrew如何为AI代码迁移画上“可信句号”
论文阅读·人工智能·软件工程
秋雨qy4 天前
VLA论文阅读2
论文阅读
网安INF4 天前
【论文阅读】-《SparseFool: a few pixels make a big difference》
论文阅读·人工智能·深度学习·网络安全·黑盒攻击
张较瘦_4 天前
[论文阅读] AI+教学 | 编程入门课的AI助手革命?ChatGPT的4大核心影响全解析
论文阅读·人工智能·chatgpt