深度学习基础之《TensorFlow框架(17)—卷积神经网络》

一、卷积神经网络介绍

1、背景

随着人工智能需求的提升,我们想要做复杂的图像识别,做自然语言处理,做语义分析翻译等等,多层神经网络的简单叠加显然力不从心

2、卷积神经网络与传统多层神经网络对比

(1)传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适

(2)卷积神经网络CNN,在原来多层神经网络的基础上,加入了更加有效的特征学习部分,具体操作就是在原来的全连接层前面加入了卷积层和池化层

(3)卷积神经网络出现,使得神经网络层数得以加深,"深度"学习由此而来

(4)通常所说的深度学习,一般指的是这些CNN等新的结构以及一些新的方法(比如新的激活函数Relu等),解决了传统多层神经网络的一些难以解决的问题

(5)与传统多层神经网络对比

输入层

隐藏层

卷积层

激活层

池化层

全连接层

输出层

3、卷积神经网络发展历史

(1)最初由机器学习中人工神经网络发展而来

(2)1989年LeCun1989

(3)1998年LeNet

(4)2012年AlexNet,改进了很多

(5)加强功能

网络结构加深

加强卷积功能

从分类到检测

新增功能模块

3、卷积网络ImageNet比赛错误率

(1)ImageNet可以说是计算机视觉研究人员进行大规模物体识别和检测时,最先想到的视觉大数据来源,最初由斯坦福大学李飞飞等人在CVPR 2009的一篇论文中推出,并被用于替代PASCAL数据集(后者在数据规模和多样性上都不如ImageNet)和LableMe数据集(在标准化上不如ImageNet)

(2)ImageNet不但是计算机视觉发展的重要推动者,也是这一波深度学习热潮的关键驱动力之一

(3)截止2016年,ImageNet中含有超过1500万由人工注释的图片网址,也就是带标签的图片,标签说明了图片中的内容,超过2.2万个类别

二、卷积神经网络三个结构

1、一张图片经过一系列的卷积、激活、池化,最后有一个FC(全连接)

也是输出top-5 error

2、神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)以及激活层

3、每一层的作用

(1)卷积层:通过在原始图像上平移来提取特征

相当于是拿着一个过滤器或者小窗口,通过在原始图片上平移来提取特征

(2)激活层:增加非线性分割能力

(3)池化层:减少学习的参数,降低网络的复杂度(最大池化和平均池化)

4、为了能够达到分类效果,还会有一个全连接层(Full Connection)也就是最后的输出层,进行损失计算并输出分类结果

相关推荐
大模型最新论文速读5 分钟前
指令微调时,也要考虑提示损失
人工智能·深度学习·语言模型·自然语言处理·llama
大千AI助手22 分钟前
BERT:双向Transformer革命 | 重塑自然语言理解的预训练范式
人工智能·深度学习·机器学习·自然语言处理·llm·bert·transformer
攻城狮7号2 小时前
阿里开源AI大模型ThinkSound如何为视频配上灵魂之声
人工智能·深度学习·开源模型·thinksound·阿里大模型
禺垣2 小时前
生成式对抗网络(GAN)模型原理概述
深度学习
weixin_444579305 小时前
大模型的开发应用(十八):大模型量化:GPTQ与AWQ
人工智能·深度学习·自然语言处理
肥猪猪爸11 小时前
BP神经网络对时序数据进行分类
人工智能·深度学习·神经网络·算法·机器学习·分类·时序数据
Keep learning!11 小时前
深度学习入门代码详细注释-ResNet18分类蚂蚁蜜蜂
人工智能·深度学习·分类
归去_来兮13 小时前
生成式对抗网络(GAN)模型原理概述
人工智能·深度学习·生成对抗网络
网安INF14 小时前
深度学习中的 Seq2Seq 模型与注意力机制
人工智能·深度学习·神经网络·注意力机制·seq2seq
SoaringPigeon15 小时前
从深度学习的角度看自动驾驶
人工智能·深度学习·自动驾驶