一起深度学习(AlexNet网络)

AlexNet神经网络

代码实现:

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 采用了11*11的卷积核来捕捉对象,因为原始输入数据比较大
    #步幅为4 ,可减少输出的高度核宽度。
    #输出通道为96,远大于Lenet
    #卷积之后大小的计算:H_2 = (H_1 + 2 * padding - kernel_size) / stride + 1,向下取整
    # 因为这里我们用的数据是fahsion_mnist ,输入通道就为1
    # [1,224,224] => [1,96,54,54]
    nn.Conv2d(in_channels=1,out_channels=96,kernel_size=11,stride=4,padding=1),nn.ReLU(),
    #池化后的大小计算公式:H_2 = (H1 + 2 * padding - kernel_size) / stride + 1
    # [1,96,54,54] => [1,96,26,26]
    nn.MaxPool2d(kernel_size=3,stride=2),
    #减小卷积窗口大小,使用padding = 2 来保证输入与输出的宽高一致,且增大输出通道。
    # [1,96,26,26] => [1,256,26,26]  H2=(26 + 2*2 -5)/1 +1
    nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,padding=2),nn.ReLU(),
    #[1,256,26,26] => [1,256,12,12]
    nn.MaxPool2d(kernel_size=3,stride=2),
    #三个卷积层
    # [1,256,12,12] => [1,384,12,12]
    nn.Conv2d(256,384, kernel_size=3, padding=1),nn.ReLU(),
    # [1,384,12,12]  =>  [1,384,12,12]
    nn.Conv2d(384,384, kernel_size=3, padding=1),nn.ReLU(),
    # [1,384,12,12] => [1,,256,12,12]
    nn.Conv2d(384,256, kernel_size=3, padding=1),nn.ReLU(),
    #[1,,256,12,12] => [1,256,5,5] 因为 H2 = (12 -3 )/2 +1 = 5
    nn.MaxPool2d(kernel_size=3, stride=2),
    #输入数据打平,传送给全连接层.
    nn.Flatten(),  # 256 * 5 * 5 = 6400
    # 由于输入的数据过大,远远大于leNet网络,为了避免过拟合,可采用 dropout
    nn.Linear(6400,4096),nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096,4096),nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096,10)
)

#加载数据集
batch_size = 128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)

#训练模型:

#开始训练
lr,num_epochs = 0.01,10
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
相关推荐
CoovallyAIHub2 分钟前
工业质检新突破!YOLO-pdd多尺度PCB缺陷检测算法实现99%高精度
深度学习·算法·计算机视觉
悟乙己5 分钟前
译|生存分析Survival Analysis案例入门讲解(一)
人工智能·机器学习·数据挖掘·生存分析·因果推荐
都给我6 分钟前
服务器中涉及节流(Throttle)的硬件组件及其应用注意事项
服务器·网络·express
无奈何杨7 分钟前
从“指点江山”到“赛博求雨”的心路历程
人工智能
ALe要立志成为web糕手9 分钟前
计算机网络基础
网络·安全·web安全·网络安全
老贾专利烩17 分钟前
智能健康项链专利拆解:ECG 与 TBI 双模态监测的硬件架构与信号融合
人工智能·科技·健康医疗
无奈何杨19 分钟前
MCP Server工具参数设计与AI约束指南
人工智能
青梅主码19 分钟前
中国在世界人工智能大会上发布《人工智能全球治理行动计划》:中美 AI 竞争白热化,贸易紧张局势下的全球治理新篇章
人工智能
loopdeloop31 分钟前
机器学习、深度学习与数据挖掘:核心技术差异、应用场景与工程实践指南
深度学习·机器学习·数据挖掘
liulun32 分钟前
SkSurface---像素的容器:表面
网络·网络协议·rpc