Pytorch张量广播

Pytorch 中的主要的数据结构包括标量、向量、矩阵、张量,同时支持数据之间的运算。在 Pytorch 中有一个张量广播的概念,就是要把小的放大,最后在一起做计算,并不是所有的张量都可以计算,规则如下

  1. 首先比较维度,如果不一致,增加维度值为 "1"
  2. 检查是否可广播,同一个维度上一致或者为 "1",为"1" 可以放大任意多个

不同维度:

复制代码
# 3, 2, 2
tensor_a = torch.tensor([[[1.0, 2.0], [3.0, 4.0]],
                         [[5.0, 6.0], [7.0, 8.0]],
                         [[9.0, 10.0], [11.0, 12.0]]])  # Shape (3, 2, 2)
# 2,2
tensor_b = torch.tensor([[0.1, 0.2],
                         [0.3, 0.4]]) 


result = tensor_a + tensor_b

结果

复制代码
[
	[  
        [ 1.1000,  2.2000], [ 3.3000,  4.4000]
    ],
    [
        [ 5.1000,  6.2000], [ 7.3000,  8.4000]
	],
	[
        [ 9.1000, 10.2000], [11.3000, 12.4000]
	]
]
  • 张量 (2,2) 变成 (1,2,2),这里要注意一下,维度比较是从右向左。
  • 再从 (1,2,2) 变成 (3,2,2),就是把数据重复三次。

广播方便了对张量的操作,例如我们想生成一张绿色北京的图,初始一张图,把绿色通道变成 255。

复制代码
import torch
import matplotlib.pyplot as plt

width, height = 256, 256

green_color = torch.tensor([0, 255, 0], dtype=torch.uint8)

green_image = torch.zeros((height, width, 3), dtype=torch.uint8) + green_color

green_image_np = green_image.numpy()


plt.figure(figsize=(6, 6))
plt.imshow(green_image_np)
plt.axis('off')  
plt.title('Green')
plt.show()
相关推荐
yunfuuwqi19 分钟前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云25 分钟前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
人工智能培训36 分钟前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli736 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
肖永威1 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
后端小肥肠1 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
TechWJ1 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
每日新鲜事1 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
枷锁—sha1 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端