Pytorch张量广播

Pytorch 中的主要的数据结构包括标量、向量、矩阵、张量,同时支持数据之间的运算。在 Pytorch 中有一个张量广播的概念,就是要把小的放大,最后在一起做计算,并不是所有的张量都可以计算,规则如下

  1. 首先比较维度,如果不一致,增加维度值为 "1"
  2. 检查是否可广播,同一个维度上一致或者为 "1",为"1" 可以放大任意多个

不同维度:

复制代码
# 3, 2, 2
tensor_a = torch.tensor([[[1.0, 2.0], [3.0, 4.0]],
                         [[5.0, 6.0], [7.0, 8.0]],
                         [[9.0, 10.0], [11.0, 12.0]]])  # Shape (3, 2, 2)
# 2,2
tensor_b = torch.tensor([[0.1, 0.2],
                         [0.3, 0.4]]) 


result = tensor_a + tensor_b

结果

复制代码
[
	[  
        [ 1.1000,  2.2000], [ 3.3000,  4.4000]
    ],
    [
        [ 5.1000,  6.2000], [ 7.3000,  8.4000]
	],
	[
        [ 9.1000, 10.2000], [11.3000, 12.4000]
	]
]
  • 张量 (2,2) 变成 (1,2,2),这里要注意一下,维度比较是从右向左。
  • 再从 (1,2,2) 变成 (3,2,2),就是把数据重复三次。

广播方便了对张量的操作,例如我们想生成一张绿色北京的图,初始一张图,把绿色通道变成 255。

复制代码
import torch
import matplotlib.pyplot as plt

width, height = 256, 256

green_color = torch.tensor([0, 255, 0], dtype=torch.uint8)

green_image = torch.zeros((height, width, 3), dtype=torch.uint8) + green_color

green_image_np = green_image.numpy()


plt.figure(figsize=(6, 6))
plt.imshow(green_image_np)
plt.axis('off')  
plt.title('Green')
plt.show()
相关推荐
flay20 分钟前
5个Claude实战项目从0到1:自动化、客服机器人、代码审查
人工智能
flay21 分钟前
Claude API完全指南:从入门到实战
人工智能
用户51914958484525 分钟前
OAuth/OpenID Connect安全测试全指南
人工智能·aigc
初级炼丹师(爱说实话版)26 分钟前
PGLRNet论文笔记
人工智能·深度学习·计算机视觉
川石课堂软件测试26 分钟前
全链路Controller压测负载均衡
android·运维·开发语言·python·mysql·adb·负载均衡
明月照山海-27 分钟前
机器学习周报十七
人工智能·机器学习
flay34 分钟前
Claude进阶秘籍:10个高级技巧让效率翻倍
人工智能
猫头虎35 分钟前
Paper2Agent:将科研论文转化为可交互的AI智能体工具项目
人工智能·prompt·aigc·交互·pip·agi·ai-native
喜欢吃豆37 分钟前
微调高级推理大模型(COT)的综合指南:从理论到实践
人工智能·python·语言模型·大模型·微调·强化学习·推理模型
Tfly__1 小时前
Ubuntu 20.04 安装Aerial Gym Simulator - 基于 Gym 的无人机强化学习仿真器
linux·人工智能·ubuntu·github·无人机·强化学习·运动规划