Pytorch张量广播

Pytorch 中的主要的数据结构包括标量、向量、矩阵、张量,同时支持数据之间的运算。在 Pytorch 中有一个张量广播的概念,就是要把小的放大,最后在一起做计算,并不是所有的张量都可以计算,规则如下

  1. 首先比较维度,如果不一致,增加维度值为 "1"
  2. 检查是否可广播,同一个维度上一致或者为 "1",为"1" 可以放大任意多个

不同维度:

复制代码
# 3, 2, 2
tensor_a = torch.tensor([[[1.0, 2.0], [3.0, 4.0]],
                         [[5.0, 6.0], [7.0, 8.0]],
                         [[9.0, 10.0], [11.0, 12.0]]])  # Shape (3, 2, 2)
# 2,2
tensor_b = torch.tensor([[0.1, 0.2],
                         [0.3, 0.4]]) 


result = tensor_a + tensor_b

结果

复制代码
[
	[  
        [ 1.1000,  2.2000], [ 3.3000,  4.4000]
    ],
    [
        [ 5.1000,  6.2000], [ 7.3000,  8.4000]
	],
	[
        [ 9.1000, 10.2000], [11.3000, 12.4000]
	]
]
  • 张量 (2,2) 变成 (1,2,2),这里要注意一下,维度比较是从右向左。
  • 再从 (1,2,2) 变成 (3,2,2),就是把数据重复三次。

广播方便了对张量的操作,例如我们想生成一张绿色北京的图,初始一张图,把绿色通道变成 255。

复制代码
import torch
import matplotlib.pyplot as plt

width, height = 256, 256

green_color = torch.tensor([0, 255, 0], dtype=torch.uint8)

green_image = torch.zeros((height, width, 3), dtype=torch.uint8) + green_color

green_image_np = green_image.numpy()


plt.figure(figsize=(6, 6))
plt.imshow(green_image_np)
plt.axis('off')  
plt.title('Green')
plt.show()
相关推荐
萤丰信息3 分钟前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog4 分钟前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
笨笨聊运维3 小时前
CentOS官方不维护版本,配置python升级方法,无损版
linux·python·centos
Gerardisite3 小时前
如何在微信个人号开发中有效管理API接口?
java·开发语言·python·微信·php
小毛驴8504 小时前
软件设计模式-装饰器模式
python·设计模式·装饰器模式
serve the people4 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
闲人编程4 小时前
Python的导入系统:模块查找、加载和缓存机制
java·python·缓存·加载器·codecapsule·查找器
weixin_457760004 小时前
Python 数据结构
数据结构·windows·python
0***K8924 小时前
前端机器学习
人工智能·机器学习