torch.searchsorted

torch.searchsorted

官方文档链接:torch.searchsorted --- PyTorch 2.3 documentation

该函数用于在已排序的序列中查找要插入的值的位置,以保持序列的顺序,

复制代码
torch.searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) → Tensor

参数如下,

  • sorted_sequence:这是一个N-D或1-D的张量,其中包含按最内部维度单调递增的序列。如果提供了sorter参数,则序列不需要按顺序排列

  • values:这是一个N-D张量或标量,包含要搜索的值

  • out_int32:这是一个可选参数,用于指示输出数据类型。如果为True,则输出数据类型为torch.int32,否则为torch.int64

  • right:这是一个可选参数,如果为False,则返回找到的第一个合适位置。如果为 True,则返回最后一个索引。如果找不到合适的索引,则对于非数值值(例如nan、inf),返回0,或者返回sorted_sequence内最内部维度的大小(超过最内部维度的最后一个索引)。如果为False,则获取每个值在sorted_sequence相应内部维度上的下限索引,如果为True,则获取上限索引。默认值为False

  • side:这是一个可选参数,"left" 对应于right为 False,"right" 对应于right为 True。如果将其设置为 "left",而right为 True,则会报错。默认值为None。

  • out:这是一个可选参数,输出张量,如果提供,则必须与 values 的大小相同

  • sorter:这是一个可选参数,如果提供,则是一个与未排序的sorted_sequence形状相匹配的张量,其中包含一个按最内部维度升序排列的索引序列

使用示例如下,

复制代码
sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])
"""
tensor([[ 1,  3,  5,  7,  9],
        [ 2,  4,  6,  8, 10]])
"""

values = torch.tensor([[3, 6, 9], [3, 6, 9]])
"""
tensor([[3, 6, 9],
        [3, 6, 9]])
"""

torch.searchsorted(sorted_sequence, values)
"""
tensor([[1, 3, 4],
        [1, 2, 4]])
对于第一行 [3, 6, 9]:
数字3在第一行的sorted_sequence中的位置是索引1
数字6在第一行的sorted_sequence中的位置是索引3(6大于5而小于7,因此将6插入到索引3的位置时,能够使序列保持升序排序)
数字9在第一行的sorted_sequence中的位置是索引4
对于第二行 [3, 6, 9]:
数字3在第二行的sorted_sequence中的位置是索引1(3大于2而小于4,因此当索引为1时,不会改变序列的升序排序)
数字6在第二行的sorted_sequence中的位置是索引2
数字9在第二行的sorted_sequence中的位置是索引4(9大于8而小于10,因此当索引为4时,不会改变序列的升序排序)
"""

## 当side='right'时, 函数会返回每个值在对应行的sorted_sequence中的右侧插入位置索引
torch.searchsorted(sorted_sequence, values, side='right')
"""
tensor([[2, 3, 5],
        [1, 3, 4]])

对于第一行 [3, 6, 9]:
数字3在第一行的sorted_sequence中的右侧插入位置是索引2(数字3的右侧插入位置索引是2)
数字6在第一行的sorted_sequence中的右侧插入位置是索引3
数字9在第一行的sorted_sequence中的右侧插入位置是索引5(数字9的右侧插入位置索引是5)
对于第二行 [3, 6, 9]:
数字3在第二行的sorted_sequence中的右侧插入位置是索引1
数字6在第二行的sorted_sequence中的右侧插入位置是索引3(数字6的右侧插入位置索引是3)
数字9在第二行的sorted_sequence中的右侧插入位置是索引4
"""

sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9])
"""
tensor([1, 3, 5, 7, 9])
"""

torch.searchsorted(sorted_sequence_1d, values)
"""
tensor([[1, 3, 4],
        [1, 3, 4]])
"""
相关推荐
九年义务漏网鲨鱼2 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫4 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain