torch.searchsorted

torch.searchsorted

官方文档链接:torch.searchsorted --- PyTorch 2.3 documentation

该函数用于在已排序的序列中查找要插入的值的位置,以保持序列的顺序,

复制代码
torch.searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) → Tensor

参数如下,

  • sorted_sequence:这是一个N-D或1-D的张量,其中包含按最内部维度单调递增的序列。如果提供了sorter参数,则序列不需要按顺序排列

  • values:这是一个N-D张量或标量,包含要搜索的值

  • out_int32:这是一个可选参数,用于指示输出数据类型。如果为True,则输出数据类型为torch.int32,否则为torch.int64

  • right:这是一个可选参数,如果为False,则返回找到的第一个合适位置。如果为 True,则返回最后一个索引。如果找不到合适的索引,则对于非数值值(例如nan、inf),返回0,或者返回sorted_sequence内最内部维度的大小(超过最内部维度的最后一个索引)。如果为False,则获取每个值在sorted_sequence相应内部维度上的下限索引,如果为True,则获取上限索引。默认值为False

  • side:这是一个可选参数,"left" 对应于right为 False,"right" 对应于right为 True。如果将其设置为 "left",而right为 True,则会报错。默认值为None。

  • out:这是一个可选参数,输出张量,如果提供,则必须与 values 的大小相同

  • sorter:这是一个可选参数,如果提供,则是一个与未排序的sorted_sequence形状相匹配的张量,其中包含一个按最内部维度升序排列的索引序列

使用示例如下,

复制代码
sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])
"""
tensor([[ 1,  3,  5,  7,  9],
        [ 2,  4,  6,  8, 10]])
"""

values = torch.tensor([[3, 6, 9], [3, 6, 9]])
"""
tensor([[3, 6, 9],
        [3, 6, 9]])
"""

torch.searchsorted(sorted_sequence, values)
"""
tensor([[1, 3, 4],
        [1, 2, 4]])
对于第一行 [3, 6, 9]:
数字3在第一行的sorted_sequence中的位置是索引1
数字6在第一行的sorted_sequence中的位置是索引3(6大于5而小于7,因此将6插入到索引3的位置时,能够使序列保持升序排序)
数字9在第一行的sorted_sequence中的位置是索引4
对于第二行 [3, 6, 9]:
数字3在第二行的sorted_sequence中的位置是索引1(3大于2而小于4,因此当索引为1时,不会改变序列的升序排序)
数字6在第二行的sorted_sequence中的位置是索引2
数字9在第二行的sorted_sequence中的位置是索引4(9大于8而小于10,因此当索引为4时,不会改变序列的升序排序)
"""

## 当side='right'时, 函数会返回每个值在对应行的sorted_sequence中的右侧插入位置索引
torch.searchsorted(sorted_sequence, values, side='right')
"""
tensor([[2, 3, 5],
        [1, 3, 4]])

对于第一行 [3, 6, 9]:
数字3在第一行的sorted_sequence中的右侧插入位置是索引2(数字3的右侧插入位置索引是2)
数字6在第一行的sorted_sequence中的右侧插入位置是索引3
数字9在第一行的sorted_sequence中的右侧插入位置是索引5(数字9的右侧插入位置索引是5)
对于第二行 [3, 6, 9]:
数字3在第二行的sorted_sequence中的右侧插入位置是索引1
数字6在第二行的sorted_sequence中的右侧插入位置是索引3(数字6的右侧插入位置索引是3)
数字9在第二行的sorted_sequence中的右侧插入位置是索引4
"""

sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9])
"""
tensor([1, 3, 5, 7, 9])
"""

torch.searchsorted(sorted_sequence_1d, values)
"""
tensor([[1, 3, 4],
        [1, 3, 4]])
"""
相关推荐
peixiuhui10 分钟前
突破边界!RK3576边缘计算网关:为工业智能注入“芯”动力
人工智能·物联网·边缘计算·rk3588·iot·rk3568·rk3576
想你依然心痛19 分钟前
鲲鹏+昇腾:开启 AI for Science 新范式——基于PINN的流体仿真加速实践
人工智能·鲲鹏·昇腾
蓝眸少年CY20 分钟前
SpringAI+Deepseek大模型应用实战
人工智能
程序员欣宸22 分钟前
LangChain4j实战之十二:结构化输出之三,json模式
java·人工智能·ai·json·langchain4j
极小狐22 分钟前
智谱上市!当 GLM-4.7 遇上 CodeRider :演示何为「1+1>2」的巅峰效能
人工智能·ai编程
sunfove31 分钟前
贝叶斯模型 (Bayesian Model) 的直觉与硬核原理
人工智能·机器学习·概率论
q_302381955631 分钟前
Atlas200DK 部署 yolov11 调用海康威视摄像头实现实时目标检测
人工智能·yolo·目标检测
故乡de云32 分钟前
Vertex AI 企业账号体系,Google Cloud 才能完整支撑
大数据·人工智能
汽车仪器仪表相关领域37 分钟前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
brave and determined39 分钟前
工程设计类学习(DAY4):硬件可靠性测试全攻略:标准到实战
人工智能·嵌入式硬件·测试·硬件设计·可靠性测试·嵌入式设计·可靠性方法