93、动态规划-最长回文子串

思路

首先从暴力递归开始,回文首尾指针相向运动肯定想等。就是回文,代码如下:

java 复制代码
public String longestPalindrome(String s) {
        if (s == null || s.length() == 0) {
            return "";
        }
        return longestPalindromeHelper(s, 0, s.length() - 1);
    }

  // 递归方法,用于寻找从left到right范围内的最长回文子串
    private String longestPalindromeHelper(String s, int left, int right) {
        if (left == right) {
            return s.substring(left, right + 1); // 如果左右指针相等,说明是单个字符,单个字符本身是回文
        }
        // 如果当前字符串是回文,直接返回这个子串
        if (isPalindrome(s, left, right)) {
            return s.substring(left, right + 1);
        }

        // 不是回文时,尝试两种情况:忽略左边字符或忽略右边字符
        String leftPalindrome = longestPalindromeHelper(s, left + 1, right);  // 忽略左边字符
        String rightPalindrome = longestPalindromeHelper(s, left, right - 1); // 忽略右边字符

        // 比较这两种情况,返回更长的那个回文子串
        return leftPalindrome.length() > rightPalindrome.length() ? leftPalindrome : rightPalindrome;
    }

    // 辅助方法,用于检查给定字符串s从left到right的部分是否是回文
    private boolean isPalindrome(String s, int left, int right) {
        while (left < right) {  // 双指针法检查是否回文
            if (s.charAt(left) != s.charAt(right)) {
                return false; // 一旦发现不对称,立即返回false
            }
            left++;  // 移动左指针
            right--; // 移动右指针
        }
        return true; // 所有字符均对称,是回文
    }

递归面临很多重复计算,这个时候可以使用动态规划

动态规划的思路:

  1. 状态定义 :定义 dp[i][j] 为布尔值,表示字符串从索引 i 到索引 j 的子串是否为回文。
  2. 初始化 :单个字符总是回文,所以对于所有 idp[i][i]true
  3. 状态转移方程 :如果 s[i]s[j] 相等,并且内部的子串也是回文(即 dp[i+1][j-1]true 或者 ij 之间的距离小于等于2),那么 dp[i][j] 也应该是 true
  4. 从底向上填表 :由于每个状态依赖于左下方的状态(即 dp[i+1][j-1]),我们需要从下向上和从左到右填充这个表。
java 复制代码
 public String longestPalindrome(String s) {
        if (s == null || s.length() == 0) {
            return "";
        }
        int n = s.length();
        boolean[][] dp = new boolean[n][n];
        String longest = "";

        // 填充动态规划表
        for (int len = 1; len <= n; len++) { // len 是当前子串的长度
            for (int start = 0; start < n; start++) {
                int end = start + len - 1;
                if (end >= n) { // 确保不越界
                    break;
                }
                // 设置dp[start][end]的值
                dp[start][end] = (s.charAt(start) == s.charAt(end)) && (len <= 2 || dp[start + 1][end - 1]);

                // 如果当前子串是回文,检查它是否是最长的回文
                if (dp[start][end] && len > longest.length()) {
                    longest = s.substring(start, end + 1);
                }
            }
        }
        return longest;
    }
相关推荐
luckys.one1 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
~|Bernard|3 小时前
在 PyCharm 里怎么“点鼠标”完成指令同样的运行操作
算法·conda
战术摸鱼大师3 小时前
电机控制(四)-级联PID控制器与参数整定(MATLAB&Simulink)
算法·matlab·运动控制·电机控制
Christo33 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
好家伙VCC4 小时前
数学建模模型 全网最全 数学建模常见算法汇总 含代码分析讲解
大数据·嵌入式硬件·算法·数学建模
liulilittle6 小时前
IP校验和算法:从网络协议到SIMD深度优化
网络·c++·网络协议·tcp/ip·算法·ip·通信
bkspiderx7 小时前
C++经典的数据结构与算法之经典算法思想:贪心算法(Greedy)
数据结构·c++·算法·贪心算法
中华小当家呐8 小时前
算法之常见八大排序
数据结构·算法·排序算法
沐怡旸9 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试
一只懒洋洋9 小时前
K-meas 聚类、KNN算法、决策树、随机森林
算法·决策树·聚类