mapreduce | 自定义Partition分区(案例2)

1.需求

统计每个手机号消费总金额,按照消费金额降序排序,最终联通、电信、移动分别写入不同的文件。

130、131、132(联通) 133(电信) 135、136、137、138、139 (移动)
手机号,消费记录

13512345678,50

13512345678,90

13122345678,10

13122345678,110

13212345678,10

13212345678,90

13912345378,10

13912345378,90

13612345678,50

13612345678,55

13312345378,65

13312345378,90

2.将数据上传到hdfs

3.Idea代码

MyPartition

java 复制代码
package demo8;

import demo5.DescIntWritable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class MyPartition extends Partitioner<DescIntWritable, Text> {

    @Override
    public int getPartition(DescIntWritable descIntWritable, Text text, int numPartitions) {
        String textStr = text.toString();
        boolean arr1 = textStr.startsWith("130") || textStr.startsWith("131") || textStr.startsWith("132");
        boolean arr2=textStr.startsWith("133");
        if(arr1){
            return 0;
        }else if(arr2){
            return 1;
        }
        return 2;
    }
}

PhoneBillJob

java 复制代码
package demo8;

import demo5.DescIntWritable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import java.io.IOException;

public class PhoneBillJob {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS","hdfs://hadoop10:8020");

        Job job = Job.getInstance(conf);
        job.setJarByClass(PhoneBillJob.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        TextInputFormat.addInputPath(job,new Path("/phtest/phone.txt"));
        TextOutputFormat.setOutputPath(job,new Path("/phtest/out"));

        job.setMapperClass(PhoneBillMapper.class);
        job.setReducerClass(PhoneBillReducer.class);
        //map输出的键与值类型
        job.setMapOutputKeyClass(DescIntWritable.class);
        job.setMapOutputValueClass(Text.class);
        //reducer输出的键与值类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DescIntWritable.class);

        //设置reduceTask的个数
        job.setNumReduceTasks(3);
        //设置自定义分区
        job.setPartitionerClass(MyPartition.class);

        boolean b = job.waitForCompletion(true);
        System.out.println(b);


    }

    static class PhoneBillMapper extends Mapper<LongWritable, Text,DescIntWritable,Text> {

        @Override
        protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
            String[] arr = value.toString().split(",");
            context.write(new DescIntWritable(Integer.parseInt(arr[1])),new Text(arr[0]));
        }
    }
    static class PhoneBillReducer extends Reducer<DescIntWritable,Text,Text,DescIntWritable> {
        @Override
        protected void reduce(DescIntWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
            for (Text value : values) {
                context.write(value, key);
            }
        }
    }}

4.在hdfs上查看结果


就一直往前走吧,别回头~

相关推荐
时序数据说2 小时前
时序数据库市场前景分析
大数据·数据库·物联网·开源·时序数据库
2501_930104046 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
健康平安的活着6 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎
念念01076 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
sunxinyu8 小时前
曲面/线 拟合gnuplot
大数据·线性回归·数据处理·数据拟合·二维三维空间数据
专注API从业者9 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
淡酒交魂11 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
mask哥11 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
TDengine (老段)11 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
livemetee11 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink