图像处理(二)

图像处理(2)

裁剪图片

python 复制代码
from skimage import io,data

iimg = io.imread(r'D:\工坊\图像处理\十个勤天2.png')

roi=iimg[50:150,120:200,:]

io.imshow(roi)

运行结果:

将图片进行二值化

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

img_gray=color.rgb2gray(img)

rows,cols=img_gray.shape

for i in range(rows):

    for j in range(cols):

        if(img_gray[i,j]<=0.5):

            img_gray[i,j]=0

        else:

            img_gray[i,j]=1

io.imshow(img_gray)

运行结果:

图像归一化

图像归一化是图像处理操作,在将图像的像素值范围缩放到特定的范围或标准化到特定的统计特征。

python 复制代码
from skimage import io,data

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

reddish = img[:, :, 0]> 170  #像素值大于170的位置为True,小于为False

img[reddish]=[0, 255, 0]  # [红,绿,蓝]三个通道

io.imshow(img)

print(img.dtype.name)

运行结果:

图像归一化

图像数据的归一化操作,将像素值线性缩放到指定范围内,加载图像数据,显示图像数据。

python 复制代码
import numpy as np

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

normalized_img = (img-np.min(img))/(np.max(img)-np.min(img))

io.imshow(img)

print(img)

运行结果:

查看图片是什么类型的图片(utf-8/float)

python 复制代码
from skimage import io,data

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

print(img.dtype.name)

运行代码:

将utf-8的图片转为float(浮点型)

python 复制代码
from skimage import data,img_as_float

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

print(img.dtype.name)

print(img)

dst = img_as_float(img)

print(dst.dtype.name)

print(img)

运行结果:

将图片分成三类,用默认颜色对三类进行着色

python 复制代码
from skimage import io,data,color

import numpy as np

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

gray = color.rgb2gray(img)

rows,cols = gray.shape

labels = np.zeros([rows,cols])

for i in range(rows):

    for j in range(cols):

        if(gray[i, j]<0.4):

            labels[i, j]=0

        elif(gray[i, j]<0.75):

            labels[i, j]=1

            

        else:

            labels[i, j]=2

dst=color.label2rgb(labels)

io.imshow(dst)

运行结果:

将浮点型(float)转为utf-8

python 复制代码
from skimage import img_as_ubyte

import numpy as np

img = np.array([0, 0.5, 1], dtype=float)

print(img.dtype.name)

dst=img_as_ubyte(img)

print(dst.dtype.name)

运行结果:

空间颜色的转换(方法一)

① Rgb转为gray

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

gray=color.rgb2gray(img)

io.imshow(gray)

运行结果:

② Rgb转为hsv

• 什么是hsv:"H"代表色相(Hue)、"S"饱和度(Saturation)和"V"亮度(Value)
python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

hsv=color.rgb2hsv(img)

io.imshow(hsv)

运行结果:

③ Rgb转lab

• 什么是lab:lab图像格式通常指的是 CIELAB 色彩空间,也称为 Lab 色彩空间。包括三个通道:L(亮度)、a(从绿色到红色的颜色分量)和b(从蓝色到黄色的颜色分量)
python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

lab=color.rgb2lab(img)

io.imshow(lab)

运行结果:

④ Gray转rgb

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

rgb=color.gray2rgb(img)

io.imshow(rgb)

运行结果:

⑤ Hsv转rgb

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

rgb=color.hsv2rgb(img)

io.imshow(rgb)

运行结果:

⑥ lab转rgb

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

rgb=color.lab2rgb(img)

io.imshow(rgb)

运行结果:

空间颜色转换(方法二)

• 方法一中的转换方式,在这个中只适用于rgb转hsv,其他的使用情况:

tospace` has to be one of dict_keys(['rgb', 'hsv', 'rgb cie', 'xyz', 'yuv', 'yiq', 'ypbpr', 'ycbcr', 'ydbdr'])

rgb转hsv:

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

hsv = color.convert_colorspace(img,'RGB','HSV')

io.imshow(hsv)

运行结果:

创建一个窗口,在窗口中对图片三种变换进行对比

从skimage库中导入data,从matplotlib.pyplot库中导入plt,使用io.imread函数从指定路径加载名为"十个勤天2.png"的图像创建一个标题为'bocoma a fammer!'且大小为8x8英寸的图像窗口,在一个2x2的子图网格中创建四个子图,为四个子图命名为"fammer.a"、"fammer.b"、"fammer.c"和"fammer.d",使用plt.show()显示绘图。

python 复制代码
from skimage import data

import matplotlib.pyplot as plt

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")



plt.figure(num='bocoma a fammer!', figsize=(8, 8))

plt.subplot(2, 2, 1)

plt.title('fammer.a')

plt.imshow(img)



plt.subplot(2, 2, 2)

plt.title('fammer.b')

plt.imshow(img[:, :, 0], cmap=plt.cm.gray)



plt.subplot(2, 2, 3)

plt.title('fammer.c')

plt.imshow(img[:, :, 1], cmap=plt.cm.gray)



plt.subplot(2, 2, 4)

plt.title('fammer.d')

plt.imshow(img[:, :, 2], cmap=plt.cm.gray)



plt.show()

运行结果:

查看库中有几张图片

python 复制代码
import skimage.io as io

from skimage import data_dir

str=data_dir + '/*.png'

coll = io.ImageCollection(str)

print(len(coll))

查看文件夹中的第二张图片

python 复制代码
from skimage import data_dir,io,color

def convert_gray(f):

    rgb=io.imread(f)

    return color.rgb2gray(rgb)

img=r"D:\工坊\图像处理"

str=img+'/*.jpg'

coll = io.ImageCollection(str)

io.imshow(coll[1])

# 自己文件夹里的图片

运行结果:

进行灰度处理:

python 复制代码
from skimage import data_dir,io,color

def convert_gray(f):

    rgb=io.imread(f)

    return color.rgb2gray(rgb)

img=r"D:\工坊\图像处理"

str=img+'/*.jpg'

coll = io.ImageCollection(str,load_func=convert_gray)

io.imshow(coll[1])

运行结果:

视频的处理

从一个视频文件中提取帧,并将每一帧保存为图片文件

python 复制代码
import cv2

from skimage import io

import os



class AVILoader:

    def __init__(self, video_file):

        self.video_file = video_file

        self.cap = cv2.VideoCapture(self.video_file)



    def __call__(self, frame):

        self.cap.set(cv2.CAP_PROP_POS_FRAMES, frame)

        ret, frame = self.cap.read()

        if ret:

            return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        else:

            return None

video_file = 'mymymyvideo.mp4'

av_loader = AVILoader(video_file)

frames = range(0, 1000, 10)

output_folder = 'frames'

os.makedirs(output_folder, exist_ok=True)

# 保存每一帧为图像文件

for frame in frames:

    img = av_loader(frame)

    if img is not None:

        filename = os.path.join(output_folder, f'frame_{frame}.jpg')

        io.imsave(filename, img)

        io.imshow(img)  # 显示图像

        io.show()       # 显示图像窗口

# 创建图像集合

ic = io.ImageCollection(os.path.join(output_folder, '*.jpg'))

# 输出图像集合

运行结果:

图片的转换

把png图片全部转换为256x256的jpg的灰度图保存在文件夹下

python 复制代码
from skimage import data_dir,io,transform,color

import numpy as np



def convert_gray(f):

        rgb=io.imread(f) #依次读取rgb图片

        gray=color.rgb2gray(rgb) #将rgb图片转换成灰度图

        dst=transform.resize(gray,(256,256)) #将灰度图片大小转换为256*256

        return dst

img="C:/Users/lenovo/Desktop/sunnn"

str=img+'/*.jpg'

coll = io.ImageCollection(str,load_func=convert_gray)



for i in range(len(coll)):

    io.imsave('C:/Users/lenovo/Desktop/sunnn/'+np.str(i)+'.png',coll[i]) #循环保存图片

运行代码:

运行结果:

如果想要继续学习,请移步下一篇blog!!!

相关推荐
果冻人工智能1 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工1 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz1 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike1 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇1 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow