图像处理(二)

图像处理(2)

裁剪图片

python 复制代码
from skimage import io,data

iimg = io.imread(r'D:\工坊\图像处理\十个勤天2.png')

roi=iimg[50:150,120:200,:]

io.imshow(roi)

运行结果:

将图片进行二值化

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

img_gray=color.rgb2gray(img)

rows,cols=img_gray.shape

for i in range(rows):

    for j in range(cols):

        if(img_gray[i,j]<=0.5):

            img_gray[i,j]=0

        else:

            img_gray[i,j]=1

io.imshow(img_gray)

运行结果:

图像归一化

图像归一化是图像处理操作,在将图像的像素值范围缩放到特定的范围或标准化到特定的统计特征。

python 复制代码
from skimage import io,data

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

reddish = img[:, :, 0]> 170  #像素值大于170的位置为True,小于为False

img[reddish]=[0, 255, 0]  # [红,绿,蓝]三个通道

io.imshow(img)

print(img.dtype.name)

运行结果:

图像归一化

图像数据的归一化操作,将像素值线性缩放到指定范围内,加载图像数据,显示图像数据。

python 复制代码
import numpy as np

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

normalized_img = (img-np.min(img))/(np.max(img)-np.min(img))

io.imshow(img)

print(img)

运行结果:

查看图片是什么类型的图片(utf-8/float)

python 复制代码
from skimage import io,data

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

print(img.dtype.name)

运行代码:

将utf-8的图片转为float(浮点型)

python 复制代码
from skimage import data,img_as_float

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

print(img.dtype.name)

print(img)

dst = img_as_float(img)

print(dst.dtype.name)

print(img)

运行结果:

将图片分成三类,用默认颜色对三类进行着色

python 复制代码
from skimage import io,data,color

import numpy as np

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

gray = color.rgb2gray(img)

rows,cols = gray.shape

labels = np.zeros([rows,cols])

for i in range(rows):

    for j in range(cols):

        if(gray[i, j]<0.4):

            labels[i, j]=0

        elif(gray[i, j]<0.75):

            labels[i, j]=1

            

        else:

            labels[i, j]=2

dst=color.label2rgb(labels)

io.imshow(dst)

运行结果:

将浮点型(float)转为utf-8

python 复制代码
from skimage import img_as_ubyte

import numpy as np

img = np.array([0, 0.5, 1], dtype=float)

print(img.dtype.name)

dst=img_as_ubyte(img)

print(dst.dtype.name)

运行结果:

空间颜色的转换(方法一)

① Rgb转为gray

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

gray=color.rgb2gray(img)

io.imshow(gray)

运行结果:

② Rgb转为hsv

• 什么是hsv:"H"代表色相(Hue)、"S"饱和度(Saturation)和"V"亮度(Value)
python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

hsv=color.rgb2hsv(img)

io.imshow(hsv)

运行结果:

③ Rgb转lab

• 什么是lab:lab图像格式通常指的是 CIELAB 色彩空间,也称为 Lab 色彩空间。包括三个通道:L(亮度)、a(从绿色到红色的颜色分量)和b(从蓝色到黄色的颜色分量)
python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

lab=color.rgb2lab(img)

io.imshow(lab)

运行结果:

④ Gray转rgb

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

rgb=color.gray2rgb(img)

io.imshow(rgb)

运行结果:

⑤ Hsv转rgb

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

rgb=color.hsv2rgb(img)

io.imshow(rgb)

运行结果:

⑥ lab转rgb

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

rgb=color.lab2rgb(img)

io.imshow(rgb)

运行结果:

空间颜色转换(方法二)

• 方法一中的转换方式,在这个中只适用于rgb转hsv,其他的使用情况:

tospace` has to be one of dict_keys(['rgb', 'hsv', 'rgb cie', 'xyz', 'yuv', 'yiq', 'ypbpr', 'ycbcr', 'ydbdr'])

rgb转hsv:

python 复制代码
from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

hsv = color.convert_colorspace(img,'RGB','HSV')

io.imshow(hsv)

运行结果:

创建一个窗口,在窗口中对图片三种变换进行对比

从skimage库中导入data,从matplotlib.pyplot库中导入plt,使用io.imread函数从指定路径加载名为"十个勤天2.png"的图像创建一个标题为'bocoma a fammer!'且大小为8x8英寸的图像窗口,在一个2x2的子图网格中创建四个子图,为四个子图命名为"fammer.a"、"fammer.b"、"fammer.c"和"fammer.d",使用plt.show()显示绘图。

python 复制代码
from skimage import data

import matplotlib.pyplot as plt

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")



plt.figure(num='bocoma a fammer!', figsize=(8, 8))

plt.subplot(2, 2, 1)

plt.title('fammer.a')

plt.imshow(img)



plt.subplot(2, 2, 2)

plt.title('fammer.b')

plt.imshow(img[:, :, 0], cmap=plt.cm.gray)



plt.subplot(2, 2, 3)

plt.title('fammer.c')

plt.imshow(img[:, :, 1], cmap=plt.cm.gray)



plt.subplot(2, 2, 4)

plt.title('fammer.d')

plt.imshow(img[:, :, 2], cmap=plt.cm.gray)



plt.show()

运行结果:

查看库中有几张图片

python 复制代码
import skimage.io as io

from skimage import data_dir

str=data_dir + '/*.png'

coll = io.ImageCollection(str)

print(len(coll))

查看文件夹中的第二张图片

python 复制代码
from skimage import data_dir,io,color

def convert_gray(f):

    rgb=io.imread(f)

    return color.rgb2gray(rgb)

img=r"D:\工坊\图像处理"

str=img+'/*.jpg'

coll = io.ImageCollection(str)

io.imshow(coll[1])

# 自己文件夹里的图片

运行结果:

进行灰度处理:

python 复制代码
from skimage import data_dir,io,color

def convert_gray(f):

    rgb=io.imread(f)

    return color.rgb2gray(rgb)

img=r"D:\工坊\图像处理"

str=img+'/*.jpg'

coll = io.ImageCollection(str,load_func=convert_gray)

io.imshow(coll[1])

运行结果:

视频的处理

从一个视频文件中提取帧,并将每一帧保存为图片文件

python 复制代码
import cv2

from skimage import io

import os



class AVILoader:

    def __init__(self, video_file):

        self.video_file = video_file

        self.cap = cv2.VideoCapture(self.video_file)



    def __call__(self, frame):

        self.cap.set(cv2.CAP_PROP_POS_FRAMES, frame)

        ret, frame = self.cap.read()

        if ret:

            return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        else:

            return None

video_file = 'mymymyvideo.mp4'

av_loader = AVILoader(video_file)

frames = range(0, 1000, 10)

output_folder = 'frames'

os.makedirs(output_folder, exist_ok=True)

# 保存每一帧为图像文件

for frame in frames:

    img = av_loader(frame)

    if img is not None:

        filename = os.path.join(output_folder, f'frame_{frame}.jpg')

        io.imsave(filename, img)

        io.imshow(img)  # 显示图像

        io.show()       # 显示图像窗口

# 创建图像集合

ic = io.ImageCollection(os.path.join(output_folder, '*.jpg'))

# 输出图像集合

运行结果:

图片的转换

把png图片全部转换为256x256的jpg的灰度图保存在文件夹下

python 复制代码
from skimage import data_dir,io,transform,color

import numpy as np



def convert_gray(f):

        rgb=io.imread(f) #依次读取rgb图片

        gray=color.rgb2gray(rgb) #将rgb图片转换成灰度图

        dst=transform.resize(gray,(256,256)) #将灰度图片大小转换为256*256

        return dst

img="C:/Users/lenovo/Desktop/sunnn"

str=img+'/*.jpg'

coll = io.ImageCollection(str,load_func=convert_gray)



for i in range(len(coll)):

    io.imsave('C:/Users/lenovo/Desktop/sunnn/'+np.str(i)+'.png',coll[i]) #循环保存图片

运行代码:

运行结果:

如果想要继续学习,请移步下一篇blog!!!

相关推荐
jndingxin2 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦3 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988943 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03273 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿4 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手4 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志4 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
我就是全世界4 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield4 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
我不是哆啦A梦4 小时前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt