Hadoop 3.4.0+HBase2.5.8+ZooKeeper3.8.4+Hive+Sqoop 分布式高可用集群部署安装 大数据系列二

创建服务器,参考

虚拟机创建服务器

|----------|---------------|------------|---|---|
| 节点名字 | 节点IP | 系统版本 | | |
| master11 | 192.168.50.11 | centos 8.5 | | |
| slave12 | 192.168.50.12 | centos 8.5 | | |
| slave13 | 192.168.50.13 | centos 8.5 | |

1 下载组件

Hadoop:官网地址

Hbase:官网地址

ZooKeeper:官网下载

Hive:官网下载

Sqoop:官网下载

为方便同学们下载,特整理到网盘

2 通过xftp 上传软件到服务器,统一放到/data/soft/

3 配置ZooKeeper

tar zxvf apache-zookeeper-3.8.4-bin.tar.gz
mv apache-zookeeper-3.8.4-bin/ /data/zookeeper
#修改配置文件
cd /data/zookeeper/conf
cp zoo_sample.cfg zoo.cfg
#创建数据保存目录
mkdir  -p /data/zookeeper/zkdata
mkdir -p /data/zookeeper/logs
vim zoo.cfg
dataDir=/tmp/zookeeper-->dataDir=/data/zookeeper/zkdata
dataLogDir=/data/zookeeper/logs
server.1=master11:2888:3888
server.2=slave12:2888:3888
server.3=slave13:2888:3888

#配置环境变量
vim /etc/profile
export ZooKeeper_HOME=/data/zookeeper
export PATH=$PATH:$ZooKeeper_HOME/bin
source  /etc/profile

#新建myid并且写入对应的myid

[root@master11 zkdata]# cat myid 
1
#对应修改
slave12
myid--2
slave13
myid--3

4 配置HBase

tar  zxvf  hbase-2.5.8-bin.tar.gz
mv  hbase-2.5.8/ /data/hbase
mkdir -p /data/hbase/logs
#vim /etc/profile
export HBASE_LOG_DIR=/data/hbase/logs
export HBASE_MANAGES_ZK=false
export HBASE_HOME=/data/hbase
export PATH=$PATH:$ZooKeeper_HOME/bin
#vim  /data/hbase/conf/regionservers
slave12
slave13
#新建backup-masters
vim  /data/hbase/conf/backup-masters
slave12
#vim  /data/hbase/conf/hbase-site.xml
 <property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
  </property>
<!--HBase端口--> 
<property>
 <name>hbase.master.info.port</name>
 <value>16010</value>
</property>
<property>
    <name>hbase.zookeeper.quorum</name>
    <value>master11,slave12,slave13</value>
  </property>
<property>
    <name>hbase.rootdir</name>
    <value>hdfs://master11:9000/hbase</value>
  </property>
<property>
  <name>hbase.wal.provider</name>
  <value>filesystem</value>
</property>

5 配置hadoop

tar zxvf hadoop-3.4.0.tar.gz
mv  hadoop-3.4.0/ /data/hadoop
#配置环境变量
vim /etc/profile
export HADOOP_HOME=/data/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$PATH:$HADOOP_HOME/sbin
source /etc/profile
#查看版本
[root@master11 soft]# hadoop version
Hadoop 3.4.0
Source code repository git@github.com:apache/hadoop.git -r bd8b77f398f626bb7791783192ee7a5dfaeec760
Compiled by root on 2024-03-04T06:35Z
Compiled on platform linux-x86_64
Compiled with protoc 3.21.12
From source with checksum f7fe694a3613358b38812ae9c31114e
This command was run using /data/hadoop/share/hadoop/common/hadoop-common-3.4.0.jar

6 修改hadoop配置文件

#core-site.xml

vim /data/hadoop/etc/hadoop/core-site.xml
#增加如下
<configuration>
<property>
    <name>fs.defaultFS</name>
    <value>hdfs://master11</value>
</property>
<!-- hadoop 本地数据存储目录 format 时自动生成 -->
<property>
    <name>hadoop.tmp.dir</name>
    <value>/data/hadoop/data/tmp</value>
</property>
<!-- 在 WebUI访问 HDFS 使用的用户名。-->
<property>
    <name>hadoop.http.staticuser.user</name>
    <value>root</value>
</property>
<property>
    <name>hadoop.proxyuser.hadoop.hosts</name>
    <value>*</value>
</property>
<property>
  <name>hadoop.proxyuser.root.hosts</name>
  <value>*</value>
</property>
<property>
  <name>hadoop.proxyuser.root.groups</name>
  <value>*</value>
</property>
<property>
    <name>ha.zookeeper.quorum</name>
    <value>master11:2181,slave12:2181,slave13:2181</value>
 </property>
 <property>
    <name>ha.zookeeper.session-timeout.ms</name>
    <value>10000</value>
 </property>
</configuration>

#hdfs-site.xml

vim  /data/hadoop/etc/hadoop/hdfs-site.xml

<configuration>

    <!-- 副本数dfs.replication默认值3,可不配置 -->
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>

    <!-- 节点数据存储地址 -->
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/data/hadoop/data/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/data/hadoop/data/dfs/data</value>
    </property>

    <!-- 主备配置 -->
    <!-- 为namenode集群定义一个services name -->
    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>
    <!-- 声明集群有几个namenode节点 -->
    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>nn1,nn2</value>
    </property>
    <!-- 指定 RPC通信地址 的地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn1</name>
        <value>master11:8020</value>
    </property>
    <!-- 指定 RPC通信地址 的地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn2</name>
        <value>slave12:8020</value>
    </property>
    <!-- http通信地址 web端访问地址 -->
    <property>
            <name>dfs.namenode.http-address.mycluster.nn1</name>
            <value>master11:50070</value>
    </property>
    <!-- http通信地址 web 端访问地址 -->
    <property>
            <name>dfs.namenode.http-address.mycluster.nn2</name>
            <value>slave12:50070</value>
     </property>

     <!-- 声明journalnode集群服务器 -->
     <property>
            <name>dfs.namenode.shared.edits.dir</name>
            <value>qjournal://master11:8485;slave12:8485;slave13:8485/mycluster</value>
         </property>
     <!-- 声明journalnode服务器数据存储目录 -->
     <property>
            <name>dfs.journalnode.edits.dir</name>
            <value>/data/hadoop/data/dfs/jn</value>
     </property>
     <!-- 开启NameNode失败自动切换 -->
     <property>
            <name>dfs.ha.automatic-failover.enabled</name>
            <value>true</value>
     </property>
     <!-- 隔离:同一时刻只能有一台服务器对外响应 -->
        <property>
        <name>dfs.ha.fencing.methods</name>
        <value>
            sshfence
            shell(/bin/true)
        </value>
    </property>
    <!-- 配置失败自动切换实现方式,通过ConfiguredFailoverProxyProvider这个类实现自动切换 -->
     <property>
            <name>dfs.client.failover.proxy.provider.mycluster</name>
            <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
     </property>

     <!-- 指定上述选项ssh通讯使用的密钥文件在系统中的位置。 -->
     <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/root/.ssh/id_rsa</value>
      </property>
      <!-- 配置sshfence隔离机制超时时间(active异常,standby如果没有在30秒之内未连接上,那么standby将变成active) -->
      <property>
            <name>dfs.ha.fencing.ssh.connect-timeout</name>
            <value>30000</value>
     </property>
     <property>
       <name>dfs.ha.fencing.methods</name>
       <value>sshfence</value>
     </property>
<!-- 开启hdfs允许创建目录的权限,配置hdfs-site.xml -->
     <property>
                <name>dfs.permissions.enabled</name>
                <value>false</value>
        </property>
    <!-- 使用host+hostName的配置方式 -->
        <property>
                <name>dfs.namenode.datanode.registration.ip-hostname-check</name>
                <value>false</value>
        </property>
<property>
   <name>dfs.webhdfs.enabled</name>
    <value>true</value>
</property>
<!-- 开启自动化: 启动zkfc -->
<property>
   <name>dfs.ha.automatic-failover.enabled</name>
   <value>true</value>
</property>
<property>
    <name>ipc.client.connect.max.retries</name>
    <value>100</value>
    <description>Indicates the number of retries a client will make to establish a server connection.</description>
</property>
<property>
    <name>ipc.client.connect.retry.interval</name>
    <value>10000</value>
    <description>Indicates the number of milliseconds a client will wait for before retrying to establish a server connection.</description>
</property>

</configuration>

#yarn-site.xml

vi /data/hadoop/etc/hadoop/yarn-site.xml
<configuration>

 <!-- 指定yarn占电脑资源,默认8核8g -->
 <property>
  <name>yarn.nodemanager.resource.cpu-vcores</name>
  <value>2</value>
</property>
<property>
  <name>yarn.nodemanager.resource.memory-mb</name>
  <value>4096</value>
</property>

 <property>
    <name>yarn.log.server.url</name>
    <value>http://node10:19888/jobhistory/logs</value>
</property>
    <!-- 指定 MR 走 shuffle -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
        </property>
    <!-- 开启日志聚集功能 -->
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <!-- 设置日志保留时间为 7 天 -->
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>86400</value>
    </property>

    <!-- 主备配置 -->
    <!-- 启用resourcemanager ha -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>my-yarn-cluster</value>
    </property>
    <!-- 声明两台resourcemanager的地址 -->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>slave12</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>slave13</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm1</name>
        <value>slave12:8088</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm2</name>
        <value>slave13:8088</value>
    </property>
    <!-- 指定zookeeper集群的地址 -->
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>master11:2181,slave12:2181,slave13:2181</value>
    </property>
    <!-- 启用自动恢复 -->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
   <!-- 指定resourcemanager的状态信息存储在zookeeper集群 -->
    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>


    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>2048</value>
    </property>
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>2048</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-pmem-ratio</name>
        <value>2.1</value>
    </property>
    <property>
        <name>mapred.child.java.opts</name>
        <value>-Xmx1024m</value>
    </property>

  <property>
    <name>yarn.resourcemanager.address.rm1</name>
    <value>slave12:8032</value>
  </property>
  <property>
    <name>yarn.resourcemanager.scheduler.address.rm1</name>
    <value>slave12:8030</value>
  </property>
  <property>
    <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
    <value>slave12:8031</value>
  </property>
  <property>
    <name>yarn.resourcemanager.admin.address.rm1</name>
    <value>slave12:8033</value>
  </property>
  <property>
    <name>yarn.nodemanager.address.rm1</name>
    <value>slave12:8041</value>
  </property>
  <property>
    <name>yarn.resourcemanager.address.rm2</name>
    <value>slave13:8032</value>
  </property>
  <property>
    <name>yarn.resourcemanager.scheduler.address.rm2</name>
    <value>slave13:8030</value>
  </property>
  <property>
    <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
    <value>slave13:8031</value>
  </property>
  <property>
    <name>yarn.resourcemanager.admin.address.rm2</name>
    <value>slave13:8033</value>
  </property>
  <property>
    <name>yarn.nodemanager.address.rm2</name>
    <value>slave13:8041</value>
  </property>
  <property>
    <name>yarn.nodemanager.localizer.address</name>
    <value>0.0.0.0:8040</value>
  </property>
  <property>
   <description>NM Webapp address.</description>
    <name>yarn.nodemanager.webapp.address</name>
    <value>0.0.0.0:8042</value>
  </property>
<property>
    <name>yarn.nodemanager.address</name>
    <value>${yarn.resourcemanager.hostname}:8041</value>
</property>
<property>
 <name>yarn.application.classpath</name>
 <value>/data/hadoop/etc/hadoop:/data/hadoop/share/hadoop/common/lib/*:/data/hadoop/share/hadoop/common/*:/data/hadoop/share/hadoop/hdfs:/data/hadoop/share/hadoop/hdfs/lib/*:/data/hadoop/share/hadoop/hdfs/*:/data/hadoop/share/hadoop/mapreduce/lib/*:/data/hadoop/share/hadoop/mapreduce/*:/data/hadoop/share/hadoop/yarn:/data/hadoop/share/hadoop/yarn/lib/*
:/data/hadoop/share/hadoop/yarn/*</value>    </property>
</configuration>

#修改workers

vi /data/hadoop/etc/hadoop/workers
master11
slave12
slave13

7 分发文件和配置

#master11
cd /data/  
scp  -r   hadoop/  slave12:/data
scp  -r   hadoop/  slave13:/data
scp  -r  hbase/  slave13:/data
scp  -r  hbase/  slave12:/data
scp  -r   zookeeper/  slave12:/data
scp  -r   zookeeper/  slave13:/data
#3台服务器的/etc/profile 变量一致
export JAVA_HOME=/usr/local/jdk
export PATH=$JAVA_HOME/bin:$PATH
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export CLASSPATH

export HADOOP_HOME=/data/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$PATH:$HADOOP_HOME/sbin
export ZooKeeper_HOME=/data/zookeeper
export PATH=$PATH:$ZooKeeper_HOME/bin
#
export HBASE_LOG_DIR=/data/hbase/logs
export HBASE_MANAGES_ZK=false
export HBASE_HOME=/data/hbase
export PATH=$PATH:$ZooKeeper_HOME/bin

export HIVE_HOME=/data/hive
export PATH=$PATH:$HIVE_HOME/bin
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root
export HDFS_ZKFC_USER=root
export HDFS_DATANODE_SECURE_USER=root
export HDFS_JOURNALNODE_USER=root

8 集群启动

#HA模式第一次或删除在格式化版本

#第一次需要格式化,master11上面
start-dfs.sh
hdfs  namenode -format
ll /data/hadoop/data/dfs/name/current/
total 16
-rw-r--r--. 1 root root 399 May 13 20:21 fsimage_0000000000000000000
-rw-r--r--. 1 root root  62 May 13 20:21 fsimage_0000000000000000000.md5
-rw-r--r--. 1 root root   2 May 13 20:21 seen_txid
-rw-r--r--. 1 root root 218 May 13 20:21 VERSION
#同步数据到slave12节点(其余namenode节点)
scp  -r  /data/hadoop/data/dfs/name/*  slave12:/data/hadoop/data/dfs/name/
#成功如图
#在任意一台 NameNode上初始化 ZooKeeper 中的 HA 状态
[root@master11 hadoop]# jps
2400 QuorumPeerMain
4897 Jps
3620 JournalNode
3383 DataNode
#
hdfs zkfc -formatZK
#如下图

#集群正常启动顺序

#zookeeper,3台服务器都执行
zkServer.sh start
#查看
[root@master11 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /data/zookeeper/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower
[root@slave12 data]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /data/zookeeper/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: leader
[root@slave13 ~]# zkServer.sh  status
ZooKeeper JMX enabled by default
Using config: /data/zookeeper/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower
#master11 ,hadoop集群一键启动
start-all.sh start
#一键停止
stop-all.sh
#jps 查看如图

#查看集群状态

#NameNode
[root@master11 ~]# hdfs  haadmin  -getServiceState nn1
active
[root@master11 ~]# hdfs  haadmin  -getServiceState nn2
standby
[root@master11 ~]# hdfs haadmin -ns mycluster -getAllServiceState
master11:8020                                      active    
slave12:8020                                       standby
#yarn
[root@master11 ~]# yarn rmadmin -getServiceState rm1
standby
[root@master11 ~]# yarn rmadmin -getServiceState rm2
active

#查看HDFS web ui

#查看 yarn集群

9 hadoop 测试使用

#创建目录
hdfs dchaungfs  -mkdir  /testdata
#查看
[root@master11 ~]# hdfs dfs  -ls /
Found 2 items
drwxr-xr-x   - root supergroup          0 2024-05-14 17:00 /hbase
drwxr-xr-x   - root supergroup          0 2024-05-14 20:32 /testdata
#上传文件
hdfs dfs  -put  jdk-8u191-linux-x64.tar.gz   /testdata
#查看文件
[root@master11 soft]# hdfs dfs  -ls /testdata/
Found 1 items
-rw-r--r--   3 root supergroup  191753373 2024-05-14 20:40 /testdata/jdk-8u191-linux-x64.tar.gz

10 启动Hbase,hadoop的active节点

[root@master11 ~]# hdfs  haadmin  -getServiceState nn1
active
#启动
start-hbase.sh
#查看
[root@master11 ~]# jps
16401 NodeManager
15491 NameNode
21543 HMaster
15848 JournalNode
1435 QuorumPeerMain
16029 DFSZKFailoverController
21902 Jps
15631 DataNode

11 安装Hive

#解压和配置环境变量

tar zxvf apache-hive-4.0.0-bin.tar.gz
mv  apache-hive-4.0.0-bin/  /data/hive
#环境变量
vi /etc/profile
export HIVE_HOME=/data/hive
export PATH=$PATH:$HIVE_HOME/bin
source /etc/profile

安装mysql ,可参考

mysql 8.3 二进制版本安装

#mysql驱动

mv mysql-connector-java-8.0.29.jar  /data/hive/lib/

schematool -dbType mysql -initSchema
#报错
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/data/hive/lib/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/data/hadoop/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Exception in thread "main" [com.ctc.wstx.exc.WstxLazyException] com.ctc.wstx.exc.WstxUnexpectedCharException: Unexpected character '=' (code 61); expected a semi-colon after the reference for entity 'characterEncoding'
 at [row,col,system-id]: [5,86,"file:/data/hive/conf/hive-site.xml"]
	at com.ctc.wstx.exc.WstxLazyException.throwLazily(WstxLazyException.java:40)
	at com.ctc.wstx.sr.StreamScanner.throwLazyError(StreamScanner.java:737)
	at com.ctc.wstx.sr.BasicStreamReader.safeFinishToken(BasicStreamReader.java:3745)
	at com.ctc.wstx.sr.BasicStreamReader.getTextCharacters(BasicStreamReader.java:914)
	at org.apache.hadoop.conf.Configuration$Parser.parseNext(Configuration.java:3434)
	at org.apache.hadoop.conf.Configuration$Parser.parse(Configuration.java:3213)
	at org.apache.hadoop.conf.Configuration.loadResource(Configuration.java:3106)
	at org.apache.hadoop.conf.Configuration.loadResources(Configuration.java:3072)
	at org.apache.hadoop.conf.Configuration.loadProps(Configuration.java:2945)
	at org.apache.hadoop.conf.Configuration.getProps(Configuration.java:2927)
	at org.apache.hadoop.conf.Configuration.set(Configuration.java:1431)
	at org.apache.hadoop.conf.Configuration.set(Configuration.java:1403)
	at org.apache.hadoop.hive.metastore.conf.MetastoreConf.newMetastoreConf(MetastoreConf.java:2120)
	at org.apache.hadoop.hive.metastore.conf.MetastoreConf.newMetastoreConf(MetastoreConf.java:2072)
	at org.apache.hive.beeline.schematool.HiveSchemaTool.main(HiveSchemaTool.java:144)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.apache.hadoop.util.RunJar.run(RunJar.java:330)
	at org.apache.hadoop.util.RunJar.main(RunJar.java:245)
Caused by: com.ctc.wstx.exc.WstxUnexpectedCharException: Unexpected character '=' (code 61); expected a semi-colon after the reference for entity 'characterEncoding'
 at [row,col,system-id]: [5,86,"file:/data/hive/conf/hive-site.xml"]
	at com.ctc.wstx.sr.StreamScanner.throwUnexpectedChar(StreamScanner.java:666)
	at com.ctc.wstx.sr.StreamScanner.parseEntityName(StreamScanner.java:2080)
	at com.ctc.wstx.sr.StreamScanner.fullyResolveEntity(StreamScanner.java:1538)
	at com.ctc.wstx.sr.BasicStreamReader.readTextSecondary(BasicStreamReader.java:4765)
	at com.ctc.wstx.sr.BasicStreamReader.finishToken(BasicStreamReader.java:3789)
	at com.ctc.wstx.sr.BasicStreamReader.safeFinishToken(BasicStreamReader.java:3743)
	... 18 more
#解决 vi /data/hive/conf/hive-site.xml
&字符 需要转义 改成 &amp;
#成功提示 Initialization script completed
数据库如下图

#启动,hive 在master11,mysql 安装在slave12

cd /data/hive/
nohup hive --service metastore & (启动hive元数据服务)
nohup ./bin/hiveserver2 & (启动jdbc连接服务)
#直接hive,提示"No current connection"
hive
[root@master11 hive]# hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/data/hive/lib/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/data/hadoop/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/data/hive/lib/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/data/hadoop/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Beeline version 4.0.0 by Apache Hive
beeline> show  databases;
No current connection
beeline> 
#在提示符 输入!connect jdbc:hive2://master11:10000,之后输入mysql用户和密码
beeline> !connect jdbc:hive2://master11:10000
Connecting to jdbc:hive2://master11:10000
Enter username for jdbc:hive2://master11:10000: root
Enter password for jdbc:hive2://master11:10000: *********
Connected to: Apache Hive (version 4.0.0)
Driver: Hive JDBC (version 4.0.0)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://master11:10000> show  databases;
INFO  : Compiling command(queryId=root_20240514222349_ac19af6a-3c43-49fd-bcd0-25fc0e5b76c6): show  databases
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Created Hive schema: Schema(fieldSchemas:[FieldSchema(name:database_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=root_20240514222349_ac19af6a-3c43-49fd-bcd0-25fc0e5b76c6); Time taken: 0.021 seconds
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Executing command(queryId=root_20240514222349_ac19af6a-3c43-49fd-bcd0-25fc0e5b76c6): show  databases
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=root_20240514222349_ac19af6a-3c43-49fd-bcd0-25fc0e5b76c6); Time taken: 0.017 seconds
+----------------+
| database_name  |
+----------------+
| default        |
+----------------+
1 row selected (0.124 seconds)
0: jdbc:hive2://master11:10000>
相关推荐
莫叫石榴姐1 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
魔珐科技2 小时前
以3D数字人AI产品赋能教育培训人才发展,魔珐科技亮相AI+教育创新与人才发展大会
大数据·人工智能
上优3 小时前
uniapp 选择 省市区 省市 以及 回显
大数据·elasticsearch·uni-app
陌小呆^O^3 小时前
Cmakelist.txt之Liunx-rabbitmq
分布式·rabbitmq
samLi06204 小时前
【更新】中国省级产业集聚测算数据及协调集聚指数数据(2000-2022年)
大数据
Mephisto.java4 小时前
【大数据学习 | Spark-Core】Spark提交及运行流程
大数据·学习·spark
EasyCVR5 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265
hummhumm5 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
斯普信专业组5 小时前
深度解析FastDFS:构建高效分布式文件存储的实战指南(上)
分布式·fastdfs