sklearn.preprocessing.normalize()

sklearn.preprocessing.normalize()是Scikit-learn库中的一个函数,用于对特征向量进行归一化处理。归一化的目的是将每个样本的特征向量缩放到单位范数(即长度为1)。

normalize函数的主要参数包括:

  • X:要归一化的数组或稀疏矩阵,形状为[n_samples, n_features]
  • norm:指定要使用的范数类型,可以是l1、l2或max
    • l1范数:将每个样本的特征向量的绝对值之和归一化为1
    • l2范数:将每个样本的特征向量的欧几里得长度归一化为1(默认)
    • max范数:将每个样本的特征向量的最大绝对值归一化为1

以下是一个简单的代码示例,

复制代码
import numpy as np
from sklearn.preprocessing import normalize

# 示例数据
X = np.array([[1, 2, 3],
              [4, 5, 6],
              [7, 8, 9]])

# 使用 l2 范数进行归一化
X_normalized_l2 = normalize(X, norm='l2')

# 使用 l1 范数进行归一化
X_normalized_l1 = normalize(X, norm='l1')

# 使用 max 范数进行归一化
X_normalized_max = normalize(X, norm='max')

print("Original Data:\n", X)
print("\nL2 Normalized Data:\n", X_normalized_l2)
print("\nL1 Normalized Data:\n", X_normalized_l1)
print("\nMax Normalized Data:\n", X_normalized_max)

输出结果如下,

复制代码
Original Data:
 [[1 2 3]
  [4 5 6]
  [7 8 9]]

L2 Normalized Data:
 [[0.26726124 0.53452248 0.80178373]
  [0.45584231 0.56980288 0.68376346]
  [0.50257071 0.57436653 0.64616234]]

L1 Normalized Data:
 [[0.16666667 0.33333333 0.5       ]
  [0.26666667 0.33333333 0.4       ]
  [0.29166667 0.33333333 0.375     ]]

Max Normalized Data:
 [[0.33333333 0.66666667 1.        ]
  [0.66666667 0.83333333 1.        ]
  [0.77777778 0.88888889 1.        ]]

以下是安装指令,

复制代码
pip install scikit-learn
conda install scikit-learn
相关推荐
永霖光电_UVLED4 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20124 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI4 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名4 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子4 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail5 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI5 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
瞎某某Blinder5 小时前
DFT学习记录[4] 电子和空穴的有效质量计算全流程
python·学习
量子-Alex5 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理
月光有害5 小时前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能