sklearn.preprocessing.normalize()

sklearn.preprocessing.normalize()是Scikit-learn库中的一个函数,用于对特征向量进行归一化处理。归一化的目的是将每个样本的特征向量缩放到单位范数(即长度为1)。

normalize函数的主要参数包括:

  • X:要归一化的数组或稀疏矩阵,形状为[n_samples, n_features]
  • norm:指定要使用的范数类型,可以是l1、l2或max
    • l1范数:将每个样本的特征向量的绝对值之和归一化为1
    • l2范数:将每个样本的特征向量的欧几里得长度归一化为1(默认)
    • max范数:将每个样本的特征向量的最大绝对值归一化为1

以下是一个简单的代码示例,

复制代码
import numpy as np
from sklearn.preprocessing import normalize

# 示例数据
X = np.array([[1, 2, 3],
              [4, 5, 6],
              [7, 8, 9]])

# 使用 l2 范数进行归一化
X_normalized_l2 = normalize(X, norm='l2')

# 使用 l1 范数进行归一化
X_normalized_l1 = normalize(X, norm='l1')

# 使用 max 范数进行归一化
X_normalized_max = normalize(X, norm='max')

print("Original Data:\n", X)
print("\nL2 Normalized Data:\n", X_normalized_l2)
print("\nL1 Normalized Data:\n", X_normalized_l1)
print("\nMax Normalized Data:\n", X_normalized_max)

输出结果如下,

复制代码
Original Data:
 [[1 2 3]
  [4 5 6]
  [7 8 9]]

L2 Normalized Data:
 [[0.26726124 0.53452248 0.80178373]
  [0.45584231 0.56980288 0.68376346]
  [0.50257071 0.57436653 0.64616234]]

L1 Normalized Data:
 [[0.16666667 0.33333333 0.5       ]
  [0.26666667 0.33333333 0.4       ]
  [0.29166667 0.33333333 0.375     ]]

Max Normalized Data:
 [[0.33333333 0.66666667 1.        ]
  [0.66666667 0.83333333 1.        ]
  [0.77777778 0.88888889 1.        ]]

以下是安装指令,

复制代码
pip install scikit-learn
conda install scikit-learn
相关推荐
gis收藏家7 分钟前
几何编码:启用矢量模式地理空间机器学习
人工智能·机器学习
纪元A梦11 分钟前
华为OD机试真题——通过软盘拷贝文件(2025A卷:200分)Java/python/JavaScript/C++/C语言/GO六种最佳实现
java·javascript·c++·python·华为od·go·华为od机试题
不吃酸的柠檬12 分钟前
MATLAB 中的图形绘制
人工智能·机器学习·matlab
用户8671324957423 分钟前
97% 的 Python 项目可以使用 partial() 更简洁
python
Ai工具分享32 分钟前
6 种AI实用的方法,快速修复模糊照片
人工智能
dundunmm35 分钟前
【每天一个知识点】如何解决大模型幻觉(hallucination)问题?
人工智能·数据挖掘·大模型
勤奋的小懒猪37 分钟前
Halcon应用:相机标定之应用
图像处理·人工智能·计算机视觉
白熊18838 分钟前
【计算机视觉】CV实战项目- 深度解析FaceAI:一款全能的人脸检测与图像处理工具库
图像处理·人工智能·计算机视觉
量子位1 小时前
实测免费 DeepResearch!轻量版深夜上线,基于 o4-mini,速度更快 / 重视脉络梳理
人工智能·openai
nenchoumi31191 小时前
VLA 论文精读(十八)π0.5: a Vision-Language-Action Model with Open-World Generalization
论文阅读·人工智能·深度学习·语言模型·vla