FunASR语音识别快速上手指南

语音识别技术在人工智能领域扮演着至关重要的角色,它使得人机交互更加自然和便捷。FunASR,作为阿里巴巴开源的一款基础语音识别工具包,旨在弥合学术研究与实际应用之间的技术鸿沟。它不仅提供了强大的功能,如非自回归端到端的语音识别、语音端点检测、标点恢复等,还通过持续的优化和更新,推动了语音识别技术的创新与进步。

FunASR的核心优势

强大的功能集

FunASR集成了多种功能,包括但不限于:

  • 语音识别(ASR):支持多种预训练模型的推理和微调,提供高精度和高效能。
  • 语音端点检测(VAD):自动检测语音片段的开始和结束,提高识别效率。
  • 标点恢复:为识别结果添加标点符号,提升可读性。
  • 语言模型:优化识别结果,适应不同语境。
  • 说话人验证与分离:确认说话人身份,分离多说话人语音。
  • 多人对话语音识别:在复杂语音环境中精准识别。

持续的优化与更新

FunASR团队持续关注学术研究的最新进展,将研究成果转化为实际应用,不断优化模型性能,如引入Qwen-Audio、Qwen-Audio-Chat等大规模模型,以及Whisper-large-v3模型,支持多语言识别和翻译。

多样化的服务

FunASR提供了中文和英文的离线文件转写服务,以及中文实时语音听写服务。这些服务持续进行性能优化,提升VAD处理、内存占用和模型性能。

容易部署的软件包

FunASR的社区软件包支持Windows平台,包含中文和英文离线文件转写服务以及中文实时听写服务,简化了部署流程。

开源模型仓库

FunASR开源了大量在工业数据上预训练的模型,如Paraformer-zh、Paraformer-zh-streaming、Paraformer-en、Conformer-en等,方便用户在ModelScope和Huggingface模型仓库中自由使用。

快速入门指南

  1. 安装FunASR:

    bash 复制代码
    pip3 install -U funasr
  2. 从源代码安装:

    bash 复制代码
    git clone https://github.com/alibaba/FunASR.git
    cd FunASR
    pip3 install -e .
  3. 使用Paraformer-zh模型进行非实时语音识别:

    python 复制代码
    from funasr import AutoModel
    
    model = AutoModel(model="paraformer-zh")
    res = model.generate(input="asr_example_zh.wav")
    print(res)
  4. 使用Paraformer-zh-streaming模型进行实时语音识别:

    python 复制代码
    from funasr import AutoModel
    
    model = AutoModel(model="paraformer-zh-streaming")
    chunk_size = [0, 10, 5]
    encoder_chunk_look_back = 4
    decoder_chunk_look_back = 1
    
    speech, sample_rate = soundfile.read("asr_example.wav")
    chunk_stride = chunk_size[1] * 960
    cache = {}
    for i in range(int((len(speech) - 1) / chunk_stride + 1)):
        speech_chunk = speech[i * chunk_stride:(i + 1) * chunk_stride]
        is_final = i == total_chunk_num - 1
        res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, 
                             chunk_size=chunk_size,
                             encoder_chunk_look_back=encoder_chunk_look_back,
                             decoder_chunk_look_back=decoder_chunk_look_back)
        print(res)

结语

FunASR以其全面的功能、易用性和持续的更新,为语音识别的研究和应用提供了有力支持。无论是进行学术研究,还是在实际项目中应用,FunASR都是一个值得深入研究和使用的工具包。如需获取更多帮助或交流,欢迎访问FunASR的GitHub页面或加入钉钉群、微信群。

相关推荐
15年网络推广青哥2 分钟前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
weixin_3875456420 分钟前
探索 AnythingLLM:借助开源 AI 打造私有化智能知识库
人工智能
engchina1 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin2 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
OpenCSG2 小时前
CSGHub开源版本v1.2.0更新
人工智能
weixin_515202492 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔2 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
机器之心2 小时前
图学习新突破:一个统一框架连接空域和频域
人工智能·后端
AI视觉网奇2 小时前
人脸生成3d模型 Era3D
人工智能·计算机视觉
call me by ur name3 小时前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类