《Python深度学习,第3版》

书籍:Python Deep Learning:Understand how deep neural networks work and apply them to real-world tasks,Third Edition

作者:Ivan Vasilev

出版:Packt Publishing

书籍下载-《Python深度学习,第3版》本书将引导您从神经网络的基础知识到当今使用的最先进的大型语言模型。通过阅读本书,您将对深度神经网络的内部工作原理有深入的了解。您将能够开发新模型或调整现有模型以解决您的任务。您还将具备足够的理解能力,以便继续进行研究并跟上该领域的最新进展。https://mp.weixin.qq.com/s/0CvHpzmUP7j3yOwXt74lQA

01 书籍介绍

深度学习领域在过去几年中发展迅速,如今涵盖了广泛的应用领域。这使得在没有扎实基础的情况下,要理解并应用深度学习变得具有挑战性。本书将引导您从神经网络的基础知识到当今使用的最先进的大型语言模型。

本书的第一部分介绍了主要的机器学习概念和范例。它涵盖了神经网络的数学基础、结构和训练算法,并深入探讨了深度学习的本质。

本书的第二部分介绍了用于计算机视觉的卷积网络。我们将学习如何解决图像分类、目标检测、实例分割和图像生成任务。

第三部分着重介绍了注意力机制和变换器------大型语言模型的核心网络架构。我们将讨论它们能够解决的新型高级任务,例如聊天机器人和文本到图像的生成。

通过阅读本书,您将对深度神经网络的内部工作原理有深入的了解。您将能够开发新模型或调整现有模型以解决您的任务。您还将具备足够的理解能力,以便继续进行研究并跟上该领域的最新进展。

您将学到什么:

**·**建立深度神经网络的理论基础

**·**了解卷积网络并将其应用于计算机视觉应用

**·**熟悉自然语言处理和循环网络

**·**探索注意力机制和变换器

**·**应用变换器和大型语言模型进行自然语言和计算机视觉任务

**·**使用PyTorch、Keras和Hugging Face Transformers实现编码示例

**·**使用MLOps开发和部署神经网络模型

本书适合软件开发人员/工程师、学生、数据科学家、数据分析师、机器学习工程师、统计学家以及对深度学习感兴趣的任何人。需要具备Python编程的先验知识。

02 作者简介

Ivan Vasilev于2013年开始开发第一个带有GPU支持的开源Java深度学习库。该库被一家德国公司收购,并与该公司继续开发。他还曾在医学图像分类和分割方面担任机器学习工程师和研究员的职位。

自2017年以来,他一直专注于金融机器学习。他共同创办了一家算法交易公司,并担任首席工程师。他拥有索非亚大学圣克里门特奥赫里德斯基分校的人工智能硕士学位,并撰写了两本关于同一主题的先前著作。

03 书籍大纲

相关推荐
池央36 分钟前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年37 分钟前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰38 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn40 分钟前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
taoqick3 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52353 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
预测模型的开发与应用研究4 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型4 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体
PowerBI学谦5 小时前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas
运维开发王义杰6 小时前
AI: Unsloth + Llama 3 微调实践,基于Colab
人工智能·llama