《Python深度学习,第3版》

书籍:Python Deep Learning:Understand how deep neural networks work and apply them to real-world tasks,Third Edition

作者:Ivan Vasilev

出版:Packt Publishing

书籍下载-《Python深度学习,第3版》本书将引导您从神经网络的基础知识到当今使用的最先进的大型语言模型。通过阅读本书,您将对深度神经网络的内部工作原理有深入的了解。您将能够开发新模型或调整现有模型以解决您的任务。您还将具备足够的理解能力,以便继续进行研究并跟上该领域的最新进展。https://mp.weixin.qq.com/s/0CvHpzmUP7j3yOwXt74lQA

01 书籍介绍

深度学习领域在过去几年中发展迅速,如今涵盖了广泛的应用领域。这使得在没有扎实基础的情况下,要理解并应用深度学习变得具有挑战性。本书将引导您从神经网络的基础知识到当今使用的最先进的大型语言模型。

本书的第一部分介绍了主要的机器学习概念和范例。它涵盖了神经网络的数学基础、结构和训练算法,并深入探讨了深度学习的本质。

本书的第二部分介绍了用于计算机视觉的卷积网络。我们将学习如何解决图像分类、目标检测、实例分割和图像生成任务。

第三部分着重介绍了注意力机制和变换器------大型语言模型的核心网络架构。我们将讨论它们能够解决的新型高级任务,例如聊天机器人和文本到图像的生成。

通过阅读本书,您将对深度神经网络的内部工作原理有深入的了解。您将能够开发新模型或调整现有模型以解决您的任务。您还将具备足够的理解能力,以便继续进行研究并跟上该领域的最新进展。

您将学到什么:

**·**建立深度神经网络的理论基础

**·**了解卷积网络并将其应用于计算机视觉应用

**·**熟悉自然语言处理和循环网络

**·**探索注意力机制和变换器

**·**应用变换器和大型语言模型进行自然语言和计算机视觉任务

**·**使用PyTorch、Keras和Hugging Face Transformers实现编码示例

**·**使用MLOps开发和部署神经网络模型

本书适合软件开发人员/工程师、学生、数据科学家、数据分析师、机器学习工程师、统计学家以及对深度学习感兴趣的任何人。需要具备Python编程的先验知识。

02 作者简介

Ivan Vasilev于2013年开始开发第一个带有GPU支持的开源Java深度学习库。该库被一家德国公司收购,并与该公司继续开发。他还曾在医学图像分类和分割方面担任机器学习工程师和研究员的职位。

自2017年以来,他一直专注于金融机器学习。他共同创办了一家算法交易公司,并担任首席工程师。他拥有索非亚大学圣克里门特奥赫里德斯基分校的人工智能硕士学位,并撰写了两本关于同一主题的先前著作。

03 书籍大纲

相关推荐
xiaoxiaoxiaolll1 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师2 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客4 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei4 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910135 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
安思派Anspire5 小时前
GPT-OSS 深度解析:OpenAI 最新大语言模型(LLM)架构
gpt·语言模型·架构
许泽宇的技术分享5 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生245 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
静西子7 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8287 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体