pytorch-10 神经网络的损失函数

1. 回归:SSE和MSE

python 复制代码
# MSE损失函数
import torch
from torch.nn import MSELoss

yhat = torch.randn(size=(50,), dtype=torch.float32)
y = torch.randn(size=(50,), dtype=torch.float32)

criterion = MSELoss()
loss1 = criterion(yhat, y)

# 计算mse 误差平方
criterion = MSELoss(reduction="mean")
loss2 = criterion(yhat, y)

# 计算sse
criterion = MSELoss(reduction="sum")
loss3 = criterion(yhat, y)

loss1, loss2, loss3

2. BCELoss二分类交叉熵损失函数

方法1:nn模块中的类

  • class BCEWithLogitsLoss

  • class BCELoss
    方法2:functional库中的计算函数 (很少用到)

  • function F.binary_cross_entropy_with_logits

  • function F.binary_cross_entropy

python 复制代码
# 二分类交叉熵损失函数 方法一、手动实现 BCELoss
import torch

N = 3*pow(10,3)
torch.random.manual_seed(420)
X = torch.rand((N,4),dtype=torch.float32)
w = torch.rand((4,1),dtype=torch.float32,requires_grad=True)
y = torch.randint(low=0,high=2,size=(N,1),dtype=torch.float32)

zhat = torch.mm(X,w)
sigma = torch.sigmoid(zhat)

loss = -(1/N) * torch.sum( (1-y)*torch.log(1-sigma) + y*torch.log(sigma) )  # binary cross entropy loss
loss
python 复制代码
# BCELoss 方法二、使用类
import torch
import torch.nn as nn

# X, w, y
# zhat, sigma(sigmoid)

criterion = nn.BCELoss()  # 不带sigmoid函数, 主要为了监控准确率
loss1 = criterion(sigma, y)

criterion = nn.BCEWithLogitsLoss()  # 带有sigmoid函数
loss2 = criterion(zhat, y)

loss1, loss2
python 复制代码
# BCELoss 方法三、使用函数
import torch
from torch.nn import functional as F

# X, w, y
# zhat, sigma(sigmoid)

loss1 = F.binary_cross_entropy(sigma, y) # 没有sigmoid函数
loss2 = F.binary_cross_entropy_with_logits(zhat, y) # 有sigmoid函数

loss1, loss2

3. CrossEntropyLoss 多分类交叉熵损失函数

方法1:调用logsoftmax和NLLLoss实现

方法2:直接调用CrossEntropyLoss

python 复制代码
# 多分类交叉熵损失函数
import torch
import torch.nn as nn

N = 3*pow(10,2)
torch.random.manual_seed(420)
X = torch.rand((N,4),dtype=torch.float32)
w = torch.rand((4,3),dtype=torch.float32,requires_grad=True)
y = torch.randint(low=0,high=2,size=(N,),dtype=torch.float32)
python 复制代码
# 方法一、LogSoftmax 和 NLLLoss
zhat = torch.mm(X,w)
logsm = nn.LogSoftmax(dim=1)
logsigma = logsm(zhat)

criterion = nn.NLLLoss() # 将标签转化成 独热编码,01的稀疏矩阵,类型是Long
loss1 = criterion(logsigma, y.long())
python 复制代码
# 方法二、CrossEntropyLoss
criterion = nn.CrossEntropyLoss()  # 属性reduction的值,mean、sum、None
loss2 = criterion(zhat, y.long())

criterion = nn.CrossEntropyLoss(reduction="mean")  # 属性reduction的值,mean、sum、none
loss_mean = criterion(zhat, y.long())

criterion = nn.CrossEntropyLoss(reduction="sum")  # 属性reduction的值,mean、sum、none
loss_sum = criterion(zhat, y.long())

criterion = nn.CrossEntropyLoss(reduction="none") # 没有聚合函数的聚合效果
loss_none = criterion(zhat, y.long())

loss1, loss2, loss_mean, loss_sum, loss_none
相关推荐
天***88961 小时前
在线教育小程序定制开发,知识付费系统AI问答网课录播APP
人工智能·小程序
qq7422349842 小时前
VitePress静态网站从零搭建到GitHub Pages部署一站式指南和DeepWiki:AI 驱动的下一代代码知识平台
人工智能·python·vue·github·vitepress·wiki
式5162 小时前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
yiersansiwu123d8 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1588 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v8 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手8 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛118 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1488 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC8 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能