谷歌发布时序预测基础模型TimesFM,2亿参数,消费级GPU可运行,零样本时间序列预测新突破

前言

时序数据在零售、金融、制造、医疗和自然科学等各个领域无处不在,而时序预测则是这些领域中一项至关重要的任务。近年来,深度学习模型在处理丰富、多变量的时序数据方面取得了显著进展,往往优于传统的统计方法,例如 ARIMA 或 GARCH。然而,大多数深度学习模型都需要经过漫长而复杂的训练和验证过程,才能在新的时序数据上进行测试。因此,对于需要快速部署和应用的实际场景,这些模型存在局限性。

为了解决这一问题,Google Research 团队推出了全新的时间序列预测基础模型------TimesFM,它可以在无需额外训练的情况下,对未曾见过的时序数据进行预测,并且取得了令人印象深刻的性能。TimesFM 基于大型时序数据集的预训练,并采用解码器式的注意力模型架构,具有出色的泛化能力,能够在各种时间尺度和不同领域的数据集上进行有效预测。

技术特点

TimesFM 拥有以下关键技术特点,使其在时序预测领域具有显著优势:

  • 海量数据预训练,解锁强大的泛化能力

TimesFM 在一个包含 1000 亿个真实世界时间点的庞大时序数据集上进行预训练。这个数据集涵盖了各种领域、趋势和季节性模式,以及不同的时间粒度。这些丰富的数据帮助 TimesFM 学习到通用时序模式,并具备强大的泛化能力,能够对未曾见过的时序数据进行准确预测。

  • 解码器式注意力模型架构,高效处理时序数据

TimesFM 采用解码器式注意力模型架构,灵感源自自然语言处理领域的大型语言模型。在训练过程中,模型将时序数据分成多个连续的"patch",并通过堆叠的 Transformer 层对这些 patch 进行编码。每个 patch 可以看作是语言模型中的一个词元,模型能够根据之前看到的 patch 信息,预测下一个 patch 的内容。

  • 灵活的上下文和预测长度,适应多样化预测需求

TimesFM 的设计能够适应不同的上下文长度和预测长度,满足多样化的预测需求。例如,模型可以根据过去 32 个时间点的数据,预测未来 128 个时间点的趋势。

  • 轻量级模型设计,消费级 GPU 可运行

TimesFM 的模型参数规模仅为 2 亿,在消费级 GPU 上即可运行,降低了使用门槛,使其更容易被应用于各种实际场景中。

性能表现

TimesFM 在多个公共数据集上进行了零样本评估,其性能与在特定数据集上专门训练的监督学习模型相比毫不逊色。

  • 在 Monash Forecasting Archive 数据集上的表现: TimesFM 在包含数千个不同时间尺度和领域的时序数据的 Monash Forecasting Archive 数据集上,其零样本预测性能超过了大多数监督学习方法,包括 DeepAR 和 WaveNet 等深度学习模型。
  • 在 Darts 数据集上的表现: TimesFM 在 Darts 数据集上表现出色,其性能与 ARIMA 和 llmtime 等模型相当,而 llmtime 则使用了参数量远大于 TimesFM 的 GPT-3 模型。
  • 在 ETT 数据集上的表现: TimesFM 在 ETT 数据集上的表现优于 llmtime,并且与专门训练的 PatchTST 模型相比性能相当。

应用场景

TimesFM 的强大功能使其在各个领域具有广泛的应用潜力:

  • 零售预测: 预测商品销量,优化库存管理,减少成本,提升收益。
  • 金融预测: 预测股票价格,管理投资风险。
  • 能源预测: 预测电力需求,优化电力生产和分配。
  • 交通预测: 预测交通流量,优化交通路线规划。
  • 天气预测: 预测气温、降雨量等。

总结

TimesFM 的出现标志着时间序列预测领域迈入了新的阶段。它能够在无需额外训练的情况下,对未曾见过的时序数据进行预测,并且取得了令人印象深刻的性能。相信 TimesFM 将在未来推动时间序列预测技术的应用和发展,为各个领域的决策提供更准确、更可靠的参考。

模型下载

Huggingface模型下载

huggingface.co/google/time...

AI快站模型免费加速下载

aifasthub.com/models/goog...

相关推荐
咸鱼桨6 分钟前
《庐山派从入门到...》PWM板载蜂鸣器
人工智能·windows·python·k230·庐山派
强哥之神17 分钟前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai
yusaisai大鱼21 分钟前
tensorflow_probability与tensorflow版本依赖关系
人工智能·python·tensorflow
18号房客21 分钟前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow
Biomamba生信基地25 分钟前
R语言基础| 功效分析
开发语言·python·r语言·医药
神秘的土鸡29 分钟前
神经网络图像隐写术:用AI隐藏信息的艺术
人工智能·深度学习·神经网络
数据分析能量站30 分钟前
神经网络-LeNet
人工智能·深度学习·神经网络·机器学习
vvw&32 分钟前
如何在 Ubuntu 22.04 上安装 Graylog 开源日志管理平台
linux·运维·服务器·ubuntu·开源·github·graylog
Jaly_W38 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
CodeClimb40 分钟前
【华为OD-E卷-木板 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od