R语言:单细胞pcoa降维和去批次

#生成随机颜色

> randomColor <- function() {

paste0("#",paste0(sample(c(0:9, letters[1:6]), 6, replace = TRUE),collapse = ""))

}

生成100个随机颜色

> randomColors <- replicate(100,randomColor())

> seurat=readRDS("seurat.rds")#读取数据

#归一化

> all.genes <- rownames(seurat)

> seurat <- ScaleData(seurat, features = all.genes)

PCA降维

> seurat <- Seurat::RunPCA(seurat, features = VariableFeatures(object = seurat))

> seurat <- Seurat::RunTSNE(seurat,dims = 1:20)

> pdf(file = "降维tsne图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "tsne",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right") #top为图列位置最上方,除此之外还有right、left、bottom(意思同英文)

> dev.off()

> pdf(file = "降维pca图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "pca",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> colaa=distinctColorPalette(100)

> pdf(file = "降维tsne单样品分布图.pdf",width =12,height = 10)

> coords <- as.data.frame(seurat@reductions$tsne@cell.embeddings[, c(1, 2)])

> names(coords) <- c("tSNE_1", "tSNE_2")

添加聚类信息

> coordscluster \<- seurat@meta.dataType

绘制 t-SNE 图

> ggplot(coords, aes(x = tSNE_1, y = tSNE_2, color = cluster)) +

geom_point(size = 0.5) +

ggtitle("This is the plot title") +

theme(legend.position = "bottom")

> dev.off()

#harmony 去批次

> seurat <- RunHarmony(seurat, group.by.vars = "Type")

鉴定高变基因(由于去除了存在批次的细胞,高变基因可能会发生改变,因此需要重新鉴定高变基因)

> seurat <- FindVariableFeatures(seurat, selection.method = "vst", nfeatures = 2000)

提取前10的高变基因

> top10 <- head(VariableFeatures(seurat), 10)

展示高变基因

> plot1 <- VariableFeaturePlot(seurat)

> plot1

> plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)

> pdf(file = "去批次后鉴定高变基因.pdf",width =7,height = 6)

> plot2

> dev.off()

#降维可视化

> pdf(file = "harmony去批次pca图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "harmony",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> seurat <- Seurat::RunTSNE(seurat,dims = 1:20,reduction ='harmony')

> pdf(file = "去批次后tsne图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "tsne",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> pdf(file = "去批次后tsne单样本分布图.pdf",width =12,height = 7.5)

添加聚类信息

> coordscluster \<- seurat@meta.dataType

绘制 t-SNE 图

> ggplot(coords, aes(x = tSNE_1, y = tSNE_2, color = cluster)) +

geom_point(size = 0.5) +

ggtitle("This is the plot title") +

theme(legend.position = "bottom")

> dev.off()

#绘制去批次后tsne单样本分布图

> ggplot(coords, aes(x = tSNE_1, y = tSNE_2, color = cluster)) +

geom_point(size = 0.5) +

ggtitle("This is the plot title") +

theme(legend.position = "bottom")

学习交流

相关推荐
LabEx2 天前
科研数据可视化核心技术:基于 AI 与 R 语言的热图、火山图及网络图绘制实践指南
人工智能·信息可视化·r语言·r语言绘图·乐备实·labex·科研数据绘图
Jet45052 天前
第100+43步 ChatGPT学习:R语言实现特征选择曲线图
学习·chatgpt·r语言
Chef_Chen2 天前
从0开始学习R语言--Day40--Kruskal-Wallis检验
开发语言·学习·r语言
quant_19863 天前
R语言如何接入实时行情接口
开发语言·经验分享·笔记·python·websocket·金融·r语言
ersanshi0553 天前
单细胞入门(2)-经典案例分析
单细胞·scrna-seq
小白学大数据4 天前
R语言爬虫实战:如何爬取分页链接并批量保存
开发语言·爬虫·信息可视化·r语言
开开心心_Every5 天前
便捷的Office批量转PDF工具
开发语言·人工智能·r语言·pdf·c#·音视频·symfony
Chef_Chen7 天前
从0开始学习R语言--Day39--Spearman 秩相关
开发语言·学习·r语言
q567315238 天前
R语言初学者爬虫简单模板
开发语言·爬虫·r语言·iphone
shootero@126.com9 天前
R语言开发记录,二(创建R包)
r语言