R语言:单细胞pcoa降维和去批次

#生成随机颜色

> randomColor <- function() {

paste0("#",paste0(sample(c(0:9, letters[1:6]), 6, replace = TRUE),collapse = ""))

}

生成100个随机颜色

> randomColors <- replicate(100,randomColor())

> seurat=readRDS("seurat.rds")#读取数据

#归一化

> all.genes <- rownames(seurat)

> seurat <- ScaleData(seurat, features = all.genes)

PCA降维

> seurat <- Seurat::RunPCA(seurat, features = VariableFeatures(object = seurat))

> seurat <- Seurat::RunTSNE(seurat,dims = 1:20)

> pdf(file = "降维tsne图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "tsne",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right") #top为图列位置最上方,除此之外还有right、left、bottom(意思同英文)

> dev.off()

> pdf(file = "降维pca图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "pca",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> colaa=distinctColorPalette(100)

> pdf(file = "降维tsne单样品分布图.pdf",width =12,height = 10)

> coords <- as.data.frame(seurat@reductions$tsne@cell.embeddings[, c(1, 2)])

> names(coords) <- c("tSNE_1", "tSNE_2")

添加聚类信息

> coordscluster \<- seurat@meta.dataType

绘制 t-SNE 图

> ggplot(coords, aes(x = tSNE_1, y = tSNE_2, color = cluster)) +

geom_point(size = 0.5) +

ggtitle("This is the plot title") +

theme(legend.position = "bottom")

> dev.off()

#harmony 去批次

> seurat <- RunHarmony(seurat, group.by.vars = "Type")

鉴定高变基因(由于去除了存在批次的细胞,高变基因可能会发生改变,因此需要重新鉴定高变基因)

> seurat <- FindVariableFeatures(seurat, selection.method = "vst", nfeatures = 2000)

提取前10的高变基因

> top10 <- head(VariableFeatures(seurat), 10)

展示高变基因

> plot1 <- VariableFeaturePlot(seurat)

> plot1

> plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)

> pdf(file = "去批次后鉴定高变基因.pdf",width =7,height = 6)

> plot2

> dev.off()

#降维可视化

> pdf(file = "harmony去批次pca图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "harmony",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> seurat <- Seurat::RunTSNE(seurat,dims = 1:20,reduction ='harmony')

> pdf(file = "去批次后tsne图.pdf",width =7.5,height = 5.5)

> DimPlot(seurat, reduction = "tsne",pt.size = 0.5)+theme_classic()+theme(panel.border = element_rect(fill=NA,color="black", size=0.5, linetype="solid"),legend.position = "right")

> dev.off()

> pdf(file = "去批次后tsne单样本分布图.pdf",width =12,height = 7.5)

添加聚类信息

> coordscluster \<- seurat@meta.dataType

绘制 t-SNE 图

> ggplot(coords, aes(x = tSNE_1, y = tSNE_2, color = cluster)) +

geom_point(size = 0.5) +

ggtitle("This is the plot title") +

theme(legend.position = "bottom")

> dev.off()

#绘制去批次后tsne单样本分布图

> ggplot(coords, aes(x = tSNE_1, y = tSNE_2, color = cluster)) +

geom_point(size = 0.5) +

ggtitle("This is the plot title") +

theme(legend.position = "bottom")

学习交流

相关推荐
图灵信徒3 小时前
R语言数据结构与数据处理基础内容
开发语言·数据挖掘·数据分析·r语言
污斑兔1 天前
技术随笔:Node.js ESM 中巧用 `-r dotenv/config` 解决环境变量异步加载问题
开发语言·r语言·node.js
兮兮能吃能睡2 天前
R语言众数函数分析
开发语言·r语言
追风少年ii2 天前
脚本更新--CosMx、Xenium的邻域通讯分析(R版本)
linux·python·r语言·r·单细胞·培训
Q一件事3 天前
R语言随机森林分析显示R方和P值
开发语言·随机森林·r语言
生物小卡拉3 天前
指定列交集内容合并-Rscript_v1.0
笔记·学习·r语言
Tiger Z4 天前
《R for Data Science (2e)》免费中文翻译 (第11章) --- Communication(1)
r语言·数据科学·中文翻译
zhangfeng11334 天前
在 R 医学数据分析中,关于 RStudio 和 VSCode 哪个效率更高
vscode·数据分析·r语言
十三画者5 天前
【文献分享】acmgscaler:用于在 ACMG/AMP 框架内对基因层面的变异效应得分进行标准化校准。
数据挖掘·数据分析·r语言
小火柴1237 天前
利用R绘制条形图
开发语言·r语言