SVM影像组学特征

近期做一个影像组学的分类模型

做的是一个胃癌T分期的模型,我刷选统计出一些胃癌区域的特征,如图:有癌症面积、体积等等

下面要做一个SVM(支持向量机)分类的模型,导入该文件,进行二分类,代码如下:

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix

# 加载数据
data_path = '../data/data.xlsx'
data = pd.read_excel(data_path, sheet_name='class2T2_T34')

# 准备数据
X = data.drop(['Filename', 'label'], axis=1)  # 删除非特征列
y = data['label']  # 标签列

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建SVM分类器

# 线性核
# svm_classifier = SVC(kernel='linear', decision_function_shape='ovo')
# 多项式核(Polynomial Kernel)
svm_classifier = SVC(kernel='poly', degree=3, coef0=1, decision_function_shape='ovo')
# 径向基函数核(Radial Basis Function, RBF Kernel)
# svm_classifier = SVC(kernel='rbf', gamma='scale', decision_function_shape='ovo')
# Sigmoid核
# svm_classifier = SVC(kernel='sigmoid', coef0=1, decision_function_shape='ovo')


# 训练模型
svm_classifier.fit(X_train, y_train)

# 预测测试集结果
y_pred = svm_classifier.predict(X_test)

# 评估模型
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))

运行结果如下:

可以看出能达到85%的准确度,说明模型能够很好的区分,需要注意,如果你的分类效果不理想,我的代码中给出了很多的核,试试不同的核运行的效果

相关推荐
旧故新长14 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
知来者逆37 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
阿让啊42 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
এ᭄画画的北北43 分钟前
力扣-160.相交链表
算法·leetcode·链表
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
爱研究的小陈2 小时前
Day 3:数学基础回顾——线性代数与概率论在AI中的核心作用
算法
渭雨轻尘_学习计算机ing2 小时前
二叉树的最大宽度计算
算法·面试
爱研究的小陈2 小时前
Day 4:机器学习初探——从监督学习到无监督学习
机器学习
BB_CC_DD2 小时前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
Blossom.1183 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合