SVM影像组学特征

近期做一个影像组学的分类模型

做的是一个胃癌T分期的模型,我刷选统计出一些胃癌区域的特征,如图:有癌症面积、体积等等

下面要做一个SVM(支持向量机)分类的模型,导入该文件,进行二分类,代码如下:

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix

# 加载数据
data_path = '../data/data.xlsx'
data = pd.read_excel(data_path, sheet_name='class2T2_T34')

# 准备数据
X = data.drop(['Filename', 'label'], axis=1)  # 删除非特征列
y = data['label']  # 标签列

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建SVM分类器

# 线性核
# svm_classifier = SVC(kernel='linear', decision_function_shape='ovo')
# 多项式核(Polynomial Kernel)
svm_classifier = SVC(kernel='poly', degree=3, coef0=1, decision_function_shape='ovo')
# 径向基函数核(Radial Basis Function, RBF Kernel)
# svm_classifier = SVC(kernel='rbf', gamma='scale', decision_function_shape='ovo')
# Sigmoid核
# svm_classifier = SVC(kernel='sigmoid', coef0=1, decision_function_shape='ovo')


# 训练模型
svm_classifier.fit(X_train, y_train)

# 预测测试集结果
y_pred = svm_classifier.predict(X_test)

# 评估模型
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))

运行结果如下:

可以看出能达到85%的准确度,说明模型能够很好的区分,需要注意,如果你的分类效果不理想,我的代码中给出了很多的核,试试不同的核运行的效果

相关推荐
T1an-11 小时前
力扣70.爬楼梯
算法·leetcode·职场和发展
T1an-11 小时前
力扣169.多数元素
数据结构·算法·leetcode
_dindong6 小时前
动规:回文串问题
笔记·学习·算法·leetcode·动态规划·力扣
wangwangmoon_light7 小时前
0.0 编码基础模板
java·数据结构·算法
共享家95277 小时前
Leetcode刷题
算法·leetcode·职场和发展
simon_skywalker7 小时前
第7章 n步时序差分 n步时序差分预测
人工智能·算法·强化学习
山,离天三尺三7 小时前
基于LINUX平台使用C语言实现MQTT协议连接华为云平台(IOT)(网络编程)
linux·c语言·开发语言·网络·物联网·算法·华为云
码上地球8 小时前
大数据成矿预测系列(三) | 从统计模型到机器学习:为何机器学习是成矿预测的新前沿?
大数据·机器学习·数据挖掘
flashlight_hi8 小时前
LeetCode 分类刷题:74. 搜索二维矩阵
python·算法·leetcode·矩阵
小年糕是糕手8 小时前
【数据结构】算法复杂度
c语言·开发语言·数据结构·学习·算法·leetcode·排序算法