hadoop hdfs优势和缺点

hdfs优点

  1. 高容错性
  2. 适合处理大数据
  3. 可构建再廉价的机器上

hdfs缺点

  1. 不适合做低延迟数据访问
  • 毫秒级的存储数据做不到
  1. 无法高效的对大量小文件进行存储
  2. 不支持并发写入 文件随机修改
  • 一个文件只能有一个writer 不允许多个线程同时写
  • 仅支持数据追加 不支持文件的随机修改

hdfs组织结构

namenode 就是master 他是一个主管 管理者
  1. 管理hdfs的名称空间
  2. 配置副本策略
  3. 管理数据块映射信息
  4. 处理客户端读写请求
datanode 就是slave namenode下达命令 datanode执行实际的存储
  1. 存储实际的数据块
  2. 执行数据块的读写操作
client 就是客户端
  1. 文件切分 文件上传hdfs的时候 client讲文件切分成一个一个的block 然后进行上传
  2. 与namenode交互 获取文件的位置信息
  3. 与datanode交互 读取或者写入数据
  4. client 提供一些命令来管理hdfs
  5. cleint 可以通过一些命令来访问hdfs
secondary namenode 并非namenode 热备 当name挂掉的时候 他并不能马上替换namenode 并提供服务
  1. 辅助namenode 分担工作量
  2. 紧急情况 可辅助恢复namenode
hdfs 文件块大小
  1. hdfs的文件在物理上是分块存储 块的大小可以通过配置参数来规定 dfs.blocksize 默认大小在hadoop 128m
  2. 如果寻址时间约为10ms, 即查找到目标block的时间为 10ms。
  3. 寻址时间为传输时间的1% 时,则为最佳状态。(专家) 因此,传输时间 =10ms/0.01=1000ms=1s
  4. 而目前磁盘的传输速率普 遍为100MB/s。
相关推荐
mazhafener1237 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享7 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
Lansonli8 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
Rverdoser10 小时前
电脑硬盘分几个区好
大数据
傻啦嘿哟10 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
Theodore_102210 小时前
大数据(2) 大数据处理架构Hadoop
大数据·服务器·hadoop·分布式·ubuntu·架构
簌簌曌10 小时前
CentOS7 + JDK8 虚拟机安装与 Hadoop + Spark 集群搭建实践
大数据·hadoop·spark
Theodore_102212 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Aurora_NeAr13 小时前
Apache Spark详解
大数据·后端·spark
IvanCodes14 小时前
六、Sqoop 导出
大数据·hadoop·sqoop