CGAN|生成手势图像|可控制生成

CGAN(条件生成对抗网络)的原理是在原始GAN的基础上,为生成器和判别器提供 额外的条件信息。

CGAN通过将条件信息(如类别标签或其他辅助信息)加入生成器和判别器的输入中,使得生成器能够根据这些条件信息生成特定类型的数据,而判别器则负责区分真实数据和生成数据是否符合这些条件。这种方式让生成器在生成数据时有了明确的方向,从而提高了生成数据的质量与相关性。

CGAN的特点包括有监督学习、联合隐层表征、可控性、使用卷积结构等,其具体内容为:

有监督学习:CGAN通过额外信息的使用,将原本无监督的GAN转变为一种有监督的学习模式,这使得网络的训练更加目标明确,生成结果更加符合预期。

联合隐层表征:在生成模型中,噪声输入和条件信息共同构成了联合隐层表征,这有助于生成更多样化且具有特定属性的数据。

可控性:CGAN的一个关键特点是提高了生成过程的可控性,即可以通过调整条件信息来指导模型生成特定类型的数据。

使用卷积结构:CGAN可以采用卷积神经网络作为其内部结构,这在图像相关的任务中尤其有效,因为它能够捕捉到局部特征,并提高模型对细节的处理能力。

一、前期工作

python 复制代码
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torchvision.utils import save_image, make_grid
from torchsummary import summary
import matplotlib.pyplot as plt

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

batch_size = 128
train_transform = transforms.Compose([
    transforms.Resize(128),
    transforms.ToTensor(),
    transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])])

train_dataset = datasets.ImageFolder(root="H:/G3/rps/rps", transform=train_transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True,
                                           num_workers=6)
def show_images(dl):
    for images, _ in dl:
        fig, ax = plt.subplots(figsize=(10, 10))
        ax.set_xticks([]); ax.set_yticks([])
        ax.imshow(make_grid(images.detach(), nrow=16).permute(1, 2, 0))
        break

show_images(train_loader)

二、构建模型

python 复制代码
latent_dim = 100
n_classes = 3
embedding_dim = 100

def weights_init(m):
    classname = m.__class__.__name__

    if classname.find('Conv') != -1:
        torch.nn.init.normal_(m.weight, 0.0, 0.02)
    
    elif classname.find('BatchNorm') != -1:
        torch.nn.init.normal_(m.weight, 1.0, 0.02)
        torch.nn.init.zeros_(m.bias)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.label_conditioned_generator = nn.Sequential(
            nn.Embedding(n_classes, embedding_dim), 
            nn.Linear(embedding_dim, 16)            
        )
        self.latent = nn.Sequential(
            nn.Linear(latent_dim, 4*4*512),  
            nn.LeakyReLU(0.2, inplace=True)  
        )

        self.model = nn.Sequential( 
            nn.ConvTranspose2d(513, 64*8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64*8, momentum=0.1, eps=0.8),  
            nn.ReLU(True),            
            nn.ConvTranspose2d(64*8, 64*4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64*4, momentum=0.1, eps=0.8),
            nn.ReLU(True),     
            nn.ConvTranspose2d(64*4, 64*2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64*2, momentum=0.1, eps=0.8),
            nn.ReLU(True),       
            nn.ConvTranspose2d(64*2, 64*1, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64*1, momentum=0.1, eps=0.8),
            nn.ReLU(True),       
            nn.ConvTranspose2d(64*1, 3, 4, 2, 1, bias=False),
            nn.Tanh()  
        )

    def forward(self, inputs):
        noise_vector, label = inputs  
        label_output = self.label_conditioned_generator(label)     
        label_output = label_output.view(-1, 1, 4, 4)        
        latent_output = self.latent(noise_vector)     
        latent_output = latent_output.view(-1, 512, 4, 4) 
        concat = torch.cat((latent_output, label_output), dim=1)
        image = self.model(concat)
        return image

generator = Generator().to(device)
generator.apply(weights_init)
a = torch.ones(100)
b = torch.ones(1)
b = b.long()
a = a.to(device)
b = b.to(device)

import torch
import torch.nn as nn

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.label_condition_disc = nn.Sequential(
            nn.Embedding(n_classes, embedding_dim),     
            nn.Linear(embedding_dim, 3*128*128)         
        )
        
        self.model = nn.Sequential(
            nn.Conv2d(6, 64, 4, 2, 1, bias=False),      
            nn.LeakyReLU(0.2, inplace=True),             
            nn.Conv2d(64, 64*2, 4, 3, 2, bias=False),    
            nn.BatchNorm2d(64*2, momentum=0.1, eps=0.8),  
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64*2, 64*4, 4, 3, 2, bias=False),  
            nn.BatchNorm2d(64*4, momentum=0.1, eps=0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64*4, 64*8, 4, 3, 2, bias=False),  
            nn.BatchNorm2d(64*8, momentum=0.1, eps=0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Flatten(),                               
            nn.Dropout(0.4),                            
            nn.Linear(4608, 1),                         
            nn.Sigmoid()                                
        )

    def forward(self, inputs):
        img, label = inputs
        
        label_output = self.label_condition_disc(label)
        label_output = label_output.view(-1, 3, 128, 128)
        
        concat = torch.cat((img, label_output), dim=1)
        
        output = self.model(concat)
        return output

a = torch.ones(2,3,128,128)
b = torch.ones(2,1)
b = b.long()
a = a.to(device)
b = b.to(device)

c = discriminator((a,b))

三、训练模型及可视化

这一部分主要定义初始化权重,构建鉴别器和生成器。

python 复制代码
# 定义损失函数
adversarial_loss = nn.BCELoss() 
 
def generator_loss(fake_output, label):
    gen_loss = adversarial_loss(fake_output, label)
    return gen_loss
 
def discriminator_loss(output, label):
    disc_loss = adversarial_loss(output, label)
    return disc_loss
learning_rate = 0.0002
 
G_optimizer = optim.Adam(generator.parameters(),     lr = learning_rate, betas=(0.5, 0.999))
D_optimizer = optim.Adam(discriminator.parameters(), lr = learning_rate, betas=(0.5, 0.999))

# 设置训练的总轮数
num_epochs = 100
# 初始化用于存储每轮训练中判别器和生成器损失的列表
D_loss_plot, G_loss_plot = [], []
 
# 循环进行训练
for epoch in range(1, num_epochs + 1):
    
    # 初始化每轮训练中判别器和生成器损失的临时列表
    D_loss_list, G_loss_list = [], []
    
    # 遍历训练数据加载器中的数据
    for index, (real_images, labels) in enumerate(train_loader):
        # 清空判别器的梯度缓存
        D_optimizer.zero_grad()
        # 将真实图像数据和标签转移到GPU(如果可用)
        real_images = real_images.to(device)
        labels      = labels.to(device)
        
        # 将标签的形状从一维向量转换为二维张量(用于后续计算)
        labels = labels.unsqueeze(1).long()
        # 创建真实目标和虚假目标的张量(用于判别器损失函数)
        real_target = Variable(torch.ones(real_images.size(0), 1).to(device))
        fake_target = Variable(torch.zeros(real_images.size(0), 1).to(device))
 
        # 计算判别器对真实图像的损失
        D_real_loss = discriminator_loss(discriminator((real_images, labels)), real_target)
        
        # 从噪声向量中生成假图像(生成器的输入)
        noise_vector = torch.randn(real_images.size(0), latent_dim, device=device)
        noise_vector = noise_vector.to(device)
        generated_image = generator((noise_vector, labels))
        
        # 计算判别器对假图像的损失(注意detach()函数用于分离生成器梯度计算图)
        output = discriminator((generated_image.detach(), labels))
        D_fake_loss = discriminator_loss(output, fake_target)
 
        # 计算判别器总体损失(真实图像损失和假图像损失的平均值)
        D_total_loss = (D_real_loss + D_fake_loss) / 2
        D_loss_list.append(D_total_loss)
 
        # 反向传播更新判别器的参数
        D_total_loss.backward()
        D_optimizer.step()
 
        # 清空生成器的梯度缓存
        G_optimizer.zero_grad()
        # 计算生成器的损失
        G_loss = generator_loss(discriminator((generated_image, labels)), real_target)
        G_loss_list.append(G_loss)
 
        # 反向传播更新生成器的参数
        G_loss.backward()
        G_optimizer.step()
 
    # 打印当前轮次的判别器和生成器的平均损失
    print('Epoch: [%d/%d]: D_loss: %.3f, G_loss: %.3f' % (
            (epoch), num_epochs, torch.mean(torch.FloatTensor(D_loss_list)), 
            torch.mean(torch.FloatTensor(G_loss_list))))
    
    # 将当前轮次的判别器和生成器的平均损失保存到列表中
    D_loss_plot.append(torch.mean(torch.FloatTensor(D_loss_list)))
    G_loss_plot.append(torch.mean(torch.FloatTensor(G_loss_list)))
 
    if epoch%10 == 0:
        # 将生成的假图像保存为图片文件
        save_image(generated_image.data[:50], './sample_%d' % epoch + '.png', nrow=5, normalize=True)
        # 将当前轮次的生成器和判别器的权重保存到文件
        torch.save(generator.state_dict(), './generator_epoch_%d.pth' % (epoch))
        torch.save(discriminator.state_dict(), './discriminator_epoch_%d.pth' % (epoch))
python 复制代码
 
 
from numpy.random import randint, randn
from numpy import linspace
from matplotlib import pyplot as plt, gridspec
import numpy as np
 
# Assuming 'generator' and 'device' are defined earlier in your code
 
generator.load_state_dict(torch.load('./generator_epoch_100.pth'), strict=False)
generator.eval()
 
interpolated = randn(100)
interpolated = torch.tensor(interpolated).to(device).type(torch.float32)
 
label = 0
labels = torch.ones(1) * label
labels = labels.to(device).unsqueeze(1).long()
 
predictions = generator((interpolated, labels))
predictions = predictions.permute(0, 2, 3, 1).detach().cpu()
 
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 100
 
plt.figure(figsize=(8, 3))
 
pred = (predictions[0, :, :, :] + 1) * 127.5
pred = np.array(pred)
plt.imshow(pred.astype(np.uint8))
plt.show()

代码中的操作将预测结果的值加1(这样所有的值都变为非负数),然后乘以127.5,最终得到的值就在0到255之间。

相关推荐
如生命般费解的谜团25 分钟前
LLM学习笔记(7)Scaled Dot-product Attention
人工智能·笔记·学习·语言模型·json
FreeIPCC3 小时前
电话机器人是什么?
大数据·人工智能·语言模型·机器人·开源·信息与通信
醉酒柴柴3 小时前
【代码pycharm】动手学深度学习v2-08 线性回归 + 基础优化算法
深度学习·算法·pycharm
字节数据平台3 小时前
火山引擎数据飞轮探索零售企业大促新场景:下放营销活动权限
大数据·人工智能
啊啊啊六子3 小时前
windows下安装wsl的ubuntu,同时配置深度学习环境
windows·深度学习·ubuntu
努力学习的啊张4 小时前
消息称三星正与 OpenAI 洽谈,有望令 Galaxy AI 整合ChatGPT,三星都要和chatgpt合作了,你会使用chatgpt了吗?
人工智能·chatgpt
Together_CZ4 小时前
GPT-4 Technical Report——GPT-4技术报告
人工智能·gpt-4
huaqianzkh5 小时前
人工智能大趋势下软件开发的未来
人工智能
years_GG5 小时前
【Git多人开发与协作之团队的环境搭建】
spring boot·深度学习·vue·github·团队开发·个人开发
不灭蚊香5 小时前
神经网络归一化方法总结
深度学习·神经网络·in·归一化·gn·ln·bn