【机器学习系列】使用高斯贝叶斯模型进行数据分类的完整流程

目录

一、导入数据

二、选择特征

三、十折交叉验证

四、划分训练集和测试集

五、训练高斯贝叶斯模型

六、预测测试集

七、查看训练集和测试集上的分数

八、查看混合矩阵

九、输出评估指标

一、导入数据

复制代码
# 根据商户数据预测其是否续约案例
import pandas
#读取数据到 data 变量中
data = pandas.read_csv('高斯贝叶斯.csv', encoding='ansi')

二、选择特征

复制代码
features = [ '注册时长', '营收收入', '成本']
x=data[features]
y=data['是否续约']

三、十折交叉验证

复制代码
#高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
gaussianNB = GaussianNB()

from sklearn.model_selection import cross_val_score
#进行K折交叉验证
cvs = cross_val_score(gaussianNB, x, y, cv=10)
cvs.mean()

分数如下:

四、划分训练集和测试集

复制代码
from sklearn.model_selection import train_test_split
 
#把数据集分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.3)

五、训练高斯贝叶斯模型

复制代码
gaussianNB = gaussianNB.fit(x_train, y_train)

六、预测测试集

复制代码
predict=gaussianNB.predict(x_test)

七、查看训练集和测试集上的分数

复制代码
gaussianNB.score(x_train, y_train)

gaussianNB.score(x_test, y_test)

八、查看混合矩阵

复制代码
gaussianNB = GaussianNB()
#使用所有数据训练模型
gaussianNB.fit(x, y)
#对所有的数据进行预测
data['预测是否续约'] = gaussianNB.predict(data[features])
from sklearn.metrics import confusion_matrix
#计算混淆矩阵,labels参数,可由 gaussianNB.classes_ 得到
confusion_matrix(
    data['是否续约'], 
    data['预测是否续约'], 
    labels=['不续约', '续约']
)

九、输出评估指标

复制代码
from sklearn.metrics import classification_report
# 输出评估指标
print(classification_report(y_test, predict))
相关推荐
模型启动机3 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***1954 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG4 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q7844 小时前
深度学习技术
人工智能·深度学习
KKKlucifer5 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全5 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖5 小时前
这个Q3,百度开始AI
人工智能·百度
Leinwin5 小时前
微软与Anthropic深化战略合作,在Azure Foundry平台部署Claude系列AI模型
人工智能·microsoft·azure
Q***f6355 小时前
机器学习书籍
人工智能·机器学习
小毅&Nora5 小时前
【AI微服务】【Spring AI Alibaba】 ① 技术内核全解析:架构、组件与无缝扩展新模型能力
人工智能·微服务·架构