【机器学习系列】使用高斯贝叶斯模型进行数据分类的完整流程

目录

一、导入数据

二、选择特征

三、十折交叉验证

四、划分训练集和测试集

五、训练高斯贝叶斯模型

六、预测测试集

七、查看训练集和测试集上的分数

八、查看混合矩阵

九、输出评估指标

一、导入数据

复制代码
# 根据商户数据预测其是否续约案例
import pandas
#读取数据到 data 变量中
data = pandas.read_csv('高斯贝叶斯.csv', encoding='ansi')

二、选择特征

复制代码
features = [ '注册时长', '营收收入', '成本']
x=data[features]
y=data['是否续约']

三、十折交叉验证

复制代码
#高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
gaussianNB = GaussianNB()

from sklearn.model_selection import cross_val_score
#进行K折交叉验证
cvs = cross_val_score(gaussianNB, x, y, cv=10)
cvs.mean()

分数如下:

四、划分训练集和测试集

复制代码
from sklearn.model_selection import train_test_split
 
#把数据集分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.3)

五、训练高斯贝叶斯模型

复制代码
gaussianNB = gaussianNB.fit(x_train, y_train)

六、预测测试集

复制代码
predict=gaussianNB.predict(x_test)

七、查看训练集和测试集上的分数

复制代码
gaussianNB.score(x_train, y_train)

gaussianNB.score(x_test, y_test)

八、查看混合矩阵

复制代码
gaussianNB = GaussianNB()
#使用所有数据训练模型
gaussianNB.fit(x, y)
#对所有的数据进行预测
data['预测是否续约'] = gaussianNB.predict(data[features])
from sklearn.metrics import confusion_matrix
#计算混淆矩阵,labels参数,可由 gaussianNB.classes_ 得到
confusion_matrix(
    data['是否续约'], 
    data['预测是否续约'], 
    labels=['不续约', '续约']
)

九、输出评估指标

复制代码
from sklearn.metrics import classification_report
# 输出评估指标
print(classification_report(y_test, predict))
相关推荐
DatGuy30 分钟前
Week 24: 深度学习补遗:Vision Transformer (ViT) 复现
人工智能·深度学习·transformer
汤姆yu30 分钟前
基于大数据的信贷风险评估的数据可视化分析与预测系统
大数据·信息可视化
A尘埃1 小时前
项目三:信息抽取与图谱问答(医疗科研文献知识图谱与智能问答平台)
人工智能·windows·知识图谱
鹿鸣悠悠1 小时前
AI测试(含大模型)与普通测试的区别及实施方法
人工智能
闲看云起1 小时前
一文了解RoPE(旋转位置编码)
人工智能·语言模型·自然语言处理
whaosoft-1431 小时前
51c视觉~合集50
人工智能
金紫火1 小时前
美团CatPaw:一款AI驱动的编程工具解析
人工智能
sensen_kiss1 小时前
INT305 Machine Learning 机器学习 Pt.6 卷积神经网络(Convolutional Neural Network)
机器学习·计算机视觉·cnn
春风霓裳2 小时前
sql-窗口函数
大数据·数据库·sql
996终结者2 小时前
深度学习从入门到精通(一):深度学习的分类
人工智能·深度学习·分类