【机器学习系列】使用高斯贝叶斯模型进行数据分类的完整流程

目录

一、导入数据

二、选择特征

三、十折交叉验证

四、划分训练集和测试集

五、训练高斯贝叶斯模型

六、预测测试集

七、查看训练集和测试集上的分数

八、查看混合矩阵

九、输出评估指标

一、导入数据

复制代码
# 根据商户数据预测其是否续约案例
import pandas
#读取数据到 data 变量中
data = pandas.read_csv('高斯贝叶斯.csv', encoding='ansi')

二、选择特征

复制代码
features = [ '注册时长', '营收收入', '成本']
x=data[features]
y=data['是否续约']

三、十折交叉验证

复制代码
#高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
gaussianNB = GaussianNB()

from sklearn.model_selection import cross_val_score
#进行K折交叉验证
cvs = cross_val_score(gaussianNB, x, y, cv=10)
cvs.mean()

分数如下:

四、划分训练集和测试集

复制代码
from sklearn.model_selection import train_test_split
 
#把数据集分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.3)

五、训练高斯贝叶斯模型

复制代码
gaussianNB = gaussianNB.fit(x_train, y_train)

六、预测测试集

复制代码
predict=gaussianNB.predict(x_test)

七、查看训练集和测试集上的分数

复制代码
gaussianNB.score(x_train, y_train)

gaussianNB.score(x_test, y_test)

八、查看混合矩阵

复制代码
gaussianNB = GaussianNB()
#使用所有数据训练模型
gaussianNB.fit(x, y)
#对所有的数据进行预测
data['预测是否续约'] = gaussianNB.predict(data[features])
from sklearn.metrics import confusion_matrix
#计算混淆矩阵,labels参数,可由 gaussianNB.classes_ 得到
confusion_matrix(
    data['是否续约'], 
    data['预测是否续约'], 
    labels=['不续约', '续约']
)

九、输出评估指标

复制代码
from sklearn.metrics import classification_report
# 输出评估指标
print(classification_report(y_test, predict))
相关推荐
慢半拍iii2 分钟前
ops-nn性能调优实战:提升神经网络推理速度的秘诀
人工智能·神经网络·ai·cnn·cann
hay_lee5 分钟前
Spring AI实现对话聊天-流式输出
java·人工智能·ollama·spring ai
塔中妖12 分钟前
CANN深度解读:从算子库看AI计算的底层架构
人工智能·架构
铁蛋AI编程实战13 分钟前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
鸿乃江边鸟13 分钟前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
weixin_5498083613 分钟前
2026 中国 AI 招聘系统市场观察:从效率工具到智能体协同,招聘正被重新定义
人工智能
张较瘦_17 分钟前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
杜子不疼.20 分钟前
CANN图引擎GE的编译优化与高效执行机制深度解析
人工智能·深度学习
池央20 分钟前
CANN 诊断工具链深度解析:oam-tools 的自动化故障信息收集、软硬件状态快照与 AI Core 错误溯源机制
运维·人工智能·自动化
深圳行云创新21 分钟前
采用 TitanIDE 3.0 开展团队级 AI-Coding 优势分析
人工智能