【机器学习系列】使用高斯贝叶斯模型进行数据分类的完整流程

目录

一、导入数据

二、选择特征

三、十折交叉验证

四、划分训练集和测试集

五、训练高斯贝叶斯模型

六、预测测试集

七、查看训练集和测试集上的分数

八、查看混合矩阵

九、输出评估指标

一、导入数据

复制代码
# 根据商户数据预测其是否续约案例
import pandas
#读取数据到 data 变量中
data = pandas.read_csv('高斯贝叶斯.csv', encoding='ansi')

二、选择特征

复制代码
features = [ '注册时长', '营收收入', '成本']
x=data[features]
y=data['是否续约']

三、十折交叉验证

复制代码
#高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
gaussianNB = GaussianNB()

from sklearn.model_selection import cross_val_score
#进行K折交叉验证
cvs = cross_val_score(gaussianNB, x, y, cv=10)
cvs.mean()

分数如下:

四、划分训练集和测试集

复制代码
from sklearn.model_selection import train_test_split
 
#把数据集分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.3)

五、训练高斯贝叶斯模型

复制代码
gaussianNB = gaussianNB.fit(x_train, y_train)

六、预测测试集

复制代码
predict=gaussianNB.predict(x_test)

七、查看训练集和测试集上的分数

复制代码
gaussianNB.score(x_train, y_train)

gaussianNB.score(x_test, y_test)

八、查看混合矩阵

复制代码
gaussianNB = GaussianNB()
#使用所有数据训练模型
gaussianNB.fit(x, y)
#对所有的数据进行预测
data['预测是否续约'] = gaussianNB.predict(data[features])
from sklearn.metrics import confusion_matrix
#计算混淆矩阵,labels参数,可由 gaussianNB.classes_ 得到
confusion_matrix(
    data['是否续约'], 
    data['预测是否续约'], 
    labels=['不续约', '续约']
)

九、输出评估指标

复制代码
from sklearn.metrics import classification_report
# 输出评估指标
print(classification_report(y_test, predict))
相关推荐
hg01184 分钟前
今年前10个月天津进出口总值6940.2亿元
大数据
OJAC11115 分钟前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心18 分钟前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云33 分钟前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周40 分钟前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran1 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_1 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
byte轻骑兵1 小时前
时序数据库选型指南:从大数据视角看IoTDB的核心优势
大数据·时序数据库·iotdb
海边夕阳20061 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_918126912 小时前
如何用ai做开发
人工智能