【机器学习系列】使用高斯贝叶斯模型进行数据分类的完整流程

目录

一、导入数据

二、选择特征

三、十折交叉验证

四、划分训练集和测试集

五、训练高斯贝叶斯模型

六、预测测试集

七、查看训练集和测试集上的分数

八、查看混合矩阵

九、输出评估指标

一、导入数据

复制代码
# 根据商户数据预测其是否续约案例
import pandas
#读取数据到 data 变量中
data = pandas.read_csv('高斯贝叶斯.csv', encoding='ansi')

二、选择特征

复制代码
features = [ '注册时长', '营收收入', '成本']
x=data[features]
y=data['是否续约']

三、十折交叉验证

复制代码
#高斯贝叶斯
from sklearn.naive_bayes import GaussianNB
gaussianNB = GaussianNB()

from sklearn.model_selection import cross_val_score
#进行K折交叉验证
cvs = cross_val_score(gaussianNB, x, y, cv=10)
cvs.mean()

分数如下:

四、划分训练集和测试集

复制代码
from sklearn.model_selection import train_test_split
 
#把数据集分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.3)

五、训练高斯贝叶斯模型

复制代码
gaussianNB = gaussianNB.fit(x_train, y_train)

六、预测测试集

复制代码
predict=gaussianNB.predict(x_test)

七、查看训练集和测试集上的分数

复制代码
gaussianNB.score(x_train, y_train)

gaussianNB.score(x_test, y_test)

八、查看混合矩阵

复制代码
gaussianNB = GaussianNB()
#使用所有数据训练模型
gaussianNB.fit(x, y)
#对所有的数据进行预测
data['预测是否续约'] = gaussianNB.predict(data[features])
from sklearn.metrics import confusion_matrix
#计算混淆矩阵,labels参数,可由 gaussianNB.classes_ 得到
confusion_matrix(
    data['是否续约'], 
    data['预测是否续约'], 
    labels=['不续约', '续约']
)

九、输出评估指标

复制代码
from sklearn.metrics import classification_report
# 输出评估指标
print(classification_report(y_test, predict))
相关推荐
aaaa_a13319 小时前
The lllustrated Transformer——阅读笔记
人工智能·深度学习·transformer
jinxinyuuuus19 小时前
文件格式转换工具:数据序列化、Web Worker与离线数据处理
人工智能·自动化
易天ETU20 小时前
短距离光模块 COB 封装与同轴工艺的区别有哪些
网络·人工智能·光模块·光通信·cob·qsfp28·100g
秋刀鱼 ..20 小时前
第二届光电科学与智能传感国际学术会议(ICOIS 2026)
运维·人工智能·科技·机器学习·制造
郭庆汝20 小时前
(九)自然语言处理笔记——命名实体的识别
人工智能·自然语言处理·命名实体识别
Oxo Security20 小时前
【AI安全】拆解 OWASP LLM Top 10 攻击架构图
人工智能·安全
Math_teacher_fan20 小时前
第二篇:核心几何工具类详解
人工智能·算法
yingxiao88820 小时前
11月海外AI应用市场:“AI轻工具”贡献最大新增;“通用型AI助手”用户留存强劲
人工智能·ai·ai应用
饭饭大王66620 小时前
卷积神经网络的设计与优化
人工智能·神经网络·cnn